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ABSTRACT 

The properties of both carbon and gold substrates are easily effected by the judicious 

choice of a surface modification protocol. Several such processes for altering surface 

composition have been published in literature. The research presented in this thesis primarily 

focuses on the development of on-column methods to modify carbon stationary phases used 

in electrochemically modulated liquid chromatography (EMLC). To this end, both porous 

graphitic carbon (PGC) and glassy carbon (GO particles have been modified on-column by 

the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the 

Kolbe reaction). Once modified, the carbon stationary phases show enhanced 

chromatographic performance both in conventional liquid chromatographic columns and 

EMLC columns. 

Additionally, one may also exploit the creation of arvl films to by electroreduction of 

arenediazonium salts in the creation of nanostructured materials. The formation of 

mercaptobenzene film on the surface of a GC electrode provides a linking platform for the 

chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry 

of the gold can be further altered by self-assembled monolayer (SAM) formation via the 

chemisorption of a second thiol species. 

Finally, the properties of gold films can be altered such that they display carbon-like 

behavior through the formation ofbenzenehexathiol (BHT) SAMs. BHT chemisorbs to the 

gold surface in a previously unprecedented planar fashion. 

Carbon and gold substrates can be chemically altered by several methodologies 

resulting in new surface properties. The development of modification protocols and their 

application in the analytical arena is considered herein. 
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GENERAL INTRODUCTION 

Dissertation Organization 

The work presented in this dissertation describes new approaches in the modification 

of carbon surfaces for chromatographic applications. Modification of carbon substrates is 

realized through three methodologies: electroreduction of arenediazonium salts, the Kolbe 

reaction and use of a mobile phase electroactive chiral selector. Additionally, altering gold 

surfaces to have carbon properties through the use of an aromatic hexalhiol as a modification 

agent is explored. 

In the introduction section, a review of the types, uses, electrochemistry, and 

modification methodologies of carbonaceous materials are discussed. A comprehensive list 

of references is given at the aid of this section. Six data chapters, each of which is presented 

as a separate manuscript with a different research focus, follow the general introduction. 

The first three chapters describe research efforts involving the modification of glassy 

carbon (GO and porous graphitic carbon (PGO stationary phases used in electrochemically 

modulated liquid chromatography (EMLC) via covalent modification using either the 

electroreduction of an arenediazonium salt or the Kolbe reaction. M each chapter, a different 

modifier is utitlized and thus, the properties of the carbon stationary phase can be easily 

altered to separate mixtures of both aromatic and proteinaceous analytes. 

Chapter 4 presents preliminary work that extends the modification of a glassy carbon 

electrode with an arenethiol film to which gold nanoparticles may be adsorbed after 

modification thus providing a new methodology to anchor gold to carbon substrates. 
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The data discussed in Chapter 5 outlines the development of a ferrocene-based chiral 

selector used in the mobile phase during EMLC separations of pharmaceutical agents, and 

Chapter 6 relates the use of hexathiolbenzene (HTB) as a modification agent for gold 

substrates that imparts carbon-like properties to the surface. The dissertation is concluded 

with a brief summary of the research presented herein and speculation concerning future 

applications of the newly developed methodologies. 

Literature Review 

Carbon is perhaps one of the most versatile substrates employed by proselytes of the 

chemical sciences. Known for their diversity of forms and properties, carbonaceous 

materials have had a tremendous impact on many facets of analytical chemistry including 

electrochemistry, surface science, and chromatography. M this review, each of the many 

forms and uses of naturally occurring and synthetic carbons are described. The majority of 

the information for these two topics was found in three well-written reviews. The 

modification of carbon-based materials is also discussed. 

Naturally Occurring Allotropes of Carbon 

As one of the most abundant elements, carbon exists in two forms - diamond and 

graphite. ̂  Although compositionaily similar, both allotropes have distinct structural and 

materials properties as illustrated in table I. The dramatic differences in bond length, 

modulus, and thermal conductivity are explained by considering the structures of these two 

materials. 
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Table 1. Structural properties of diamond and graphite.^ 

Property Cubic Diamond Hexagonal Graphite 
Bond length (Â) 1.54 1.41, 3.35 
Density (g/cm3) 3.52 2.26 

Bulk modulus (GPa) 442 286 
Young's modulus (GPa) 1054 1020,36.3 

Melting point (K) 4500 4450 
Thermal conductivity (W/mK.) 15000 2800, 5 

Diamond 

The most common diamond structure has a cubic lattice (zinc blende) and consists of 

spJ hybridized carbon atoms connected tetragonalIv by obonds with a C-C bond length of 

1.54 À as represented in figure I. It is this tetragonal bonding that imparts the characteristic 

hardness to the crystal. A less common form of diamond (Lonsdaleite) is a hexagonal 

structure that adopts a wurtzite crystal structure with C-C bond lengths of 1.52 À. Due to 

their rarity and subsequent cost, naturally occurring diamonds are used primarily in jewelry 

due to their attractive appearance and hardness. 

Figure 1. Schematic representation of the cubic diamond lattice. 
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Graphite 

A second elemental form of carbon is graphite. It is constructed of sheet-like layers of 

carbon atoms with sp~ o=-bonds and a delocalized /T-arrav. The C-C bond distance in graphite 

is 1.41 À. which is slightly less than that of diamond. This difference is best explained by 

the bonding within the graphitic sheets, which is intermediate between Cspi-C^ and Csp:-

Cspj. Like diamond, two forms of graphite are known. The first is hexagonal graphite, which 

has an ABAB layering of graphene planes and an mterlayer spacing of 3.35 À as depicted in 

figure 2. This large mterlayer distance suggests that ^-bonding between layers is negligible. 

A less-known form of graphite has an ABCABC layering of graphitic planes thus adopting a 

rhombohedral structure. Rhombohedral graphite is a minor component of well-crystallized 

B 

1.4IÂ 

3.35À 

Figure Z. Schematic representation of the hexagonal graphite structure. 
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graphites and its concentration may be increased by a deformation process such as grinding. 

Due to the high ash content in natural deposits of graphite, it is typically not used in 

analytical applications. 

Processed and Synthetic Carbons 

In comparison to naturally occurring forms of carbon, several categories of processed 

carbon exist. These include, but are not limited to. carbon blacks, active carbon, synthetic 

graphite, glassy carbon, carbon fibers, carbon nanotubes, fullerenes and synthetic diamond. 

Each of the aforementioned materials has unique properties and is created by varying 

synthetic methodologies. Many of these synthetic processes involve a heating process 

termed graphitization. In this procedure, the carbonaceous material is heated to high 

temperatures (-1500 °K). This procedure results in the ordering of the aromatic rings into 

graphene planes typical in graphitic structures as depicted in figure 3. 

Carbon Blacks 

Used primarily in the tire rubber industry, carbon blacks are prepared by burning 

gaseous or liquid hydrocarbons in a limited supply of air at 1000 °C. Several procedural 

methodologies have been adopted and these are detailed in table 2. The surface area for the 

channel black particles varies depending on the synthetic process with channel blacks being 

the smallest (50 Â) and thermal blacks the largest (> 3000 A). In general, the conductance of 

carbon blacks is improved by the removal of surface oxides rather than graphitization, 

indicating that the particle-particle contact resistance is greater and the major resistance 

component in carbon blacks. 
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Figure 3. Model of graphitization of carbon materials. 

Table 2. Methods for the preparation of carbon black materials. I 

Method Title Procedure 

Channel Incomplete oxidation of natural gas 

Oil furnace Aromatic residue oils from petroleum 
products are heated to 300 °C and atomized 

into a hot zone at 1400 °C 

Thermal Thermal decomposition of hydrocarbon 
gases in the absence of a flame 

Acetylene black A class of thermal black; Acetylene 
decomposes exothermically to yield carbon 

black and hydrogen at T > 1800 °C 
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Carbon blacks are also used in electrochemical applications as components of carbon 

paste electrodes (CPE),4 which are biphase systems comprised of powders held together by 

viscous or capillary forces of a liquid phase like NujoL 

Active Carbon 

Active carbons are characterized by high surface area and porosity. These materials 

find common use as adsorbents and catalyst supports due to the high capacity of their 

numerous and easily accessible micropores (diameter ~ 15À). Active carbons are generated 

through two principle methods: thermal and chemical activation. In the thermal activation 

protocol, a previously charred material is heated in the presence of an oxidizing gas such as 

steam. Chemical activation involves the heating of a mixture of raw material (e.g. sawdust, 

coconut shells, charcoal, petroleum coke) and dehydrating agent (e.g. H3PO4, ZnCI?, H2SO4) 

to temperatures ranging from 200 to 650 °C. After carbonization, the drying agent is leached 

from the product 

Synthetic Graphite 

Artificial graphitic materials are produced via a multitude of methods. In general, 

petroleum coke is heated in the first stage to 1000 °C followed by treatment at 2500-3000 °C. 

This procedure orders the graphene planes as previously discussed (see figure 3). The higher 

the treatment temperature, the more ordered the graphite planes become. Processed graphite 

has many industrial uses including batteries, lubricants and rubbers. 

Pyrolytic graphite3 (PG) is synthesized by the thermal decomposition of 

carbonaceous gases (e.g., methane) onto a substrate at T > 1200 °C. Although the main 
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structural component of PG is carbon cones, the structure varies greatly with the deposition 

substrate, hydrocarbon gas composition and concentration, contact time between the gas and 

substrate, and the geometry of the pyro lysis chamber. High electrical conductivity is found 

parallel to the deposition surface while conductivity is low in the perpendicular direction. 

The PG surface is typically prepared by polishing with 600 mesh silicon carbide 

paper. This technique cuts across the conical deposition planes, exposing vertical edges. 

However, it is not possible to obtain a reproducible surface area, stress or grain pattern via 

this method. Polishing PG also exposes a large number of edge planes (Le. PG will have 

more electrochemical activity) of the truncated cones of the graphite layers. 

A derivative of PG, stress recrystallized pyrolytic graphite, commonly referred to as 

highly ordered pyrolytic graphite (HOPG)^. is made by heating PG to 3400 °C while 

compressing the material to enhance crystallite formation and growth. HOPG is a common 

electrode material employed in analytical chemistry and has a layered structure as shown in 

figure 4. Its application as an electrode in analytical chemistry will be discussed in a future 

section. 

Glassy Carbon 

Perhaps one of the most familiar carbon-based electrode materials used in analytical 

chemistry is glassy carbon also termed "vitreous carbon". Glassy carbon materials are 

produced by the thermal degradation of organic polymers and can be in two forms, both of 

which find application as electrodes, frits, joints and bearings. The first is a solid structure 
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edge plane 
basal plane 

Figure 4. Microstructure of highly ordered pyrolytic graphite (HOPG). 

that is simply referred to as glassy carbon (GC)^-12 GC has a significant volume of closed 

voids resulting in a low density material. As illustrated in figure 5, the structure is porous 

with randomly oriented microfibrils. The lamellar width (La) is on the order of 50 À and the 

height (Lc) about 15 À. Although difficult to machine due to its hardness, GC has several 

attractive properties as a material including impermeability to gases, resistance to chemical 

attack, electrical conductivity, and high purity. 

Reticulated vitreous carbon (RVC)^ is the second type of glassy carbon, and is an 

open pore material with a honeycomb structure. In contrast to GC, RVC has a high void 

volume and electrical conductivity and it therefore finds application as a flow-through 

electrode. 
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Figure 5. Proposed structure of glassy carbon. 

Carbon Fibers 

An important industrial carbonaceous material is carbon fiber, which is synthesized 

from either polyacryiomtrile (PAN) or mesophase pitch (generated by thermal 

polymerization of petroleum pitch) precursor fibers using two types of carbonizing heat 

treatments. Type I treated fibers are heated at temperatures greater than 2000 °C and have 

comparatively low strength to type H fibers, which are heated to T < 1500 °C. PAN fibers 

are more resistant to compressive failure than their pitch-based counterparts, are fibrillar in 

nature and subsequently do not possess an extended graphitic structure. 

Carbon fiber materials have many advantages over powdered forms. First, the pores 

and active surface sites of fibers are highly accessible to adsorptive or reactive fluids. Since 
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the fibrous materials can be woven into cloths and felts, they are devoid of the difficulties 

associated with packed beds such as channeling and settling. In the electrochemical arena, 

woven fibers (cloths and felts) are used as flow-through electrodes because of their 

conductivity, high surface area:volume ratio and low cost. Finally, carbon fibers have 

strength superior to graphite, hence these materials are used in composites found in aircrafts 

where long-term durability is critical. 

In addition to conventional carbon fibers, one may also prepare activated carbon 

fibers (ACF). This process employs low temperature treatments in lieu of graphitization 

where small pores are developed via selective oxidation of carbon. Since adsorption at ACF 

is faster than at powdered carbon materials, they are used as catalysts, wound dressings and 

skin substitutes. 

Another related type of carbon fiber is found in vapor grown carbon fiber ( VGCF) 

composites. These materials are synthesized from the pyroloysis of hydrocarbons or CO in 

the presence of a catalyst. VGCF may be highly graphitized since the heat treatment 

temperature (H IT) is approximately 2800 °C and its properties may therefore approach that 

of single crystal graphite. 

Carbon Nanotubes 

First observed in 1991 by transmission electron microscopy (TEM)14~*A carbon 

nanotubes have aroused much interest due to their unique properties. Nanotubes are prepared 

using a carbon arc or laser vaporization method in the presence of a metal catalyst (e.g. Ni-Y 

or Co-Ni) that prevents closure of the tube end. Carbon nanotubes consist of a cylidrical 
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Figure 6. Simplified illustration of a single-wailed nanotube. 

graphene sheet closed on either end by a fullerene-like structure as depicted in figure 6. In 

general, the structure of a nanotube depends upon the orientation of the hexagons in the 

cylinder with respect to the tubule axis and is characterized in terms of its diameter, chiral 

angle and one-dimensional unit cell. Numerous other forms of nanotubes have been prepared 

having interesting nanostructures. Much research interest has been focused towards uses of 

these elegant carbon materials because of their metallic or semiconducting electronic 

properties. 17-20 

Fullerenes 

First discovered in 1985 in the mass spectrum of laser-ablated graphite, fullerenes 

have attracted much interest due to their unique structure and properties.-^ The basic 

fullerene architype is that of G&0, also referred to as Buckyball since it resembles the geodesic 

domes of R Buckminster Fuller the noted architect and engineer (figure 7). 

Ceo fullerene consists of 12 pentagons and 20 hexagons arranged in a spheroid 

structure. Each carbon atom is bonded to three others by two long C-C bonds (—1.45 Â) and 

one short bond (-1.4 À) whose bond orders are considered to be intermediate between Csp3-
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Cspj and Csp2-Csp2 bonds. Since the 1980s, other derivatives of the basic C«j structure have 

been synthesized and characterized including C?o, C?s, Ck and Cg4.~ The research focused 

on application of these unique molecules is too diverse to report here. M general, fullerenes 

find use as optical limiters and fullerene doped polymers have been applied as photo-voltaic 

devices and photo-refractive materials. 

(a) (b) 

Figure 7. (a) Representative structure of a Qo Fullerene. (b) Geodesic dome design of 

R_ Buckminster Fuller. 
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Synthetic Diamond Materials 

Synthetic diamonds are prepared by dissolution of graphite in metals and crystallizing 

the diamond at high pressure and temperature. More useful in analytical applications are the 

boron doped diamond (BDD) films, prepared by chemical vapor deposition (CVD), which 

have found application as electrodes due to the film properties which include: 1) no 

degradation over time, 2) a large potential window, 3) a low and featureless background, 4) 

low background noise, and 5) little to no adsorption of organic materials.-^ 

Electrochemistry at Carbon Electrodes 

One of the most extensive applications of carbonaceous materials in analytical 

chemistry has been in the field of electrochemistry. Carbon-based electrodes have become a 

critical part in the development of solid electrodes for several reasons.-^ First, many useful 

cost-effective forms of carbon are available for use as electrodes (table 3). Secondly, the 

kinetics of carbon oxidation is slow (depending on the electrolyte); this results in a wide 

potential window. Finally, one can easily take advantage of the surface groups inherently 

present on carbon to influence electron transfer properties of the material. 

Whilst choosing an electrode for a particular electro analytical task, several criteria 

must be considered including background current, potential limits, electrode kinetics, and the 

materials properties of carbon. However, there really is no ideal electrode for every 

situation, and the method by which a carbon electrode is handled has a significant impact on 

its electrochemical behavior. The criteria for electrode selection and effect of pretreatment 

on the electron transfer properties of the electrode will be discussed in the following sections. 
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Table 3. Common electrode materials and some representative applications. 

Familv Electrochemical 
Application 

Pyrolytic 
graphite 

Polycrystallme 
graphite 

Glassy 
carbon 

Carbon 
fibers 

pyrolytic graphite (PG) 
highly ordered pyrolytic graphite (HOPG) 

carbon paste electrodes (CPE) 
spectroscopic graphite electrodes 

graphite composite electrodes (wax 
impregnated graphite electrode-WIGE) 

glassy carbon (GC) 
reticulated vitreous carbon (RVQ 

perfectly oriented fibers 
disordered fibers 

general 
electrode 

general electrode: 
used when a highly 

reproducible surface is 
needed 

general electrode 
RVC used as a flow-

through electrode 

microelectrades: flow 
through electrodes when 

woven into fabrics 

Background Current, Potential Limits, and Electron Transfer Kinetics 

The background current at a metallic electrode generally involves the charging of the 

double-layer at the electrode solution interface. However, with carbon electrodes, the 

situation is slightly more complex. Carbon electrodes have a "non-classical" component to 

the conventional background over and above double-layer charging which gets included in 

what is termed the apparent capacitance. Depending strongly on the pretreatment protocol 

used, this non-classical component has been attributed to surface redox processes, ion 

adsorption, and porosity. The magnitude of this component varies with the type of carbon 

employed. 

The rate of electron transfer for an electrochemical process is discussed in terms of its 

heterogeneous electron transfer rate constant, k°. A manifestation of surface structure, 



www.manaraa.com

16 

measurements of rate constants provide useful information about the electrode, and like 

many other parameters, the rate of electron transfer at carbon electrodes is strongly 

dependent upon the electrode type and history. For example, the voltammetry of the 

ferri/ferrocyanide couple in aqueous electrolyte (1 M KC1) at GC and HOPG demonstrates 

that the electron transfer is faster at the GC electrode surface.-̂  This difference is best 

explained by the aforementioned differences in micro structures between the two substrates as 

enumerated in the following section. 

Materials Properties of Carbon 

The properties of carbonaceous materials vary greatly depending on the 

microstructure, surface roughness, cleanliness, oxidation and heterogeneity. As a simple 

illustration, one may consider the structure of HOPG (figure 4), which best resembles single 

crystal graphite. The electrochemical properties of HOPG are drastically different depending 

on whether one is using its basal or edge plane. Table 4 presents typical capacitances, 

adsorption values for anthraqumone and heterogeneous rate constants (k°) for the ferri-

ferrocvanide couple for both the basal and edge planes. From these data, one notices that the 

Table 4. Comparison of electrochemical properties for basal and edge planes of HOPG. 

Basal plane Edge plane 
Capacitance (gF/cm2) <1.0 — 50-70 

Adsorption of anthraquinone < I > 150 
disulfonate (pmol/cm2) 

k° for FeÇCNy-4- (cm/s) <10"" 0.06-0.10 
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edge plane is more reactive towards adsorption of solution species and has faster kinetics, but 

it is more capacitive than the basal plane. 

An additional feature of carbon materials to consider is the nature of the surface 

groups. Several oxygen-containing groups are typically present, in varying concentrations, 

as shown in figure 8, which shows a schematic representation of the functional moitiés that 

can be present on a carbon surface. The extent of oxidized surface species profoundly affects 

the background current and the interaction of the electrode with the solution species and 

depends on the treatment of the electrode. Oxidation of the carbon surface is difficult to 

avoid since most pretreatments (discussed in a later section) are carried out in the laboratory 

ambient. 

OH O C02H 0_° 

Figure 8. Representation of surface groups on a carbon substrate. 
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Electrode Pretreatment 

As mentioned in previous sections, the identity and history of the carbon electrode is 

a vital component to understanding its electrochemical behavior. In many cases, the 

enhancement of electron transfer properties for a particular electroactive species at an 

electrode is desired. One way of improving the electrochemical behavior of a carbon 

electrode is by employing a pretreatment protocol to the electrode surface. In many cases, 

pretreatment results in the increase in the amount of oxygen-containing groups on the 

surface. As an added benefit, surface groups provide a convenient way to covalently modify 

the electrode surface. Several methodologies exist for pretreating the electrode prior to use. 

including mechanical abrasion10.26-28^ chemical oxidation I, electrochemical pretreatment 

(ECP)-9~*4. plasma treatmentŝ -*#. m-situ laser activation^,49-53__ and vacuum heat 

treatment (VHT)."*3.54 The notion of chemically modified electrodes (CMEs) will be 

expounded upon in a future section. 

Mechanical Abrasion 

The physical polishing of carbon electrode surfaces varies* amongst research groups 

and ranges from simple procedures to more involved methods. In most cases, abrasion of the 

electrode surface is achieved by sequentially using a series of three a-alumina powders 

starting at a 1.0 |im size, followed by 03 fim and 0.05 fim rinsing with copious amount of 

deiomzed water after each polishing step. More rigorous protocols for treating rough 

surfaces call for using either diamond paste (6 pm, lfim, 0-25 pm) or SiC sand paper (240, 

400. 600 grit) prior to the Alumina series. After mechanical abrasion, the electrode is 
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frequently ultrasonicated in water or an organic solvent such as acetonitrile or isopropyl 

alcohol to remove adsorbed species. Extreme measures call for the extraction of the 

electrode in a soxhlet apparatus. Table 5 summarizes the results on reaction rates for selected 

polishing protocols for differing carbon electrodes. I 

Chemical Oxidation 

Several common chemical oxidants are used to increase the concentration of 

oxygenated moieties on the carbon surface. The majority of these agents are inorganic acids 

including nitric and sulfuric acid, and are frequently combined with chromium, cerium, silver 

or hydrogen peroxide. However, treatment of an electrode surface with a corrosive acid 

generally results in the formation of pits or the destruction of the surface. 

Electrochemical Pretreatment (ECP) 

One of the most facile pretreatment procedures for activating a carbon electrode is 

accomplished by electrochemical oxidation of the electrode surface in an aqueous electrolyte. 

Table 6 summarizes the results of several more common electrochemical pretreatment 

methods on different electrode materials. I 

Some generalization about the effect of ECP on the carbon surface may be readily 

drawn. First, the surface O/C ratio increases significantly as evidenced by X-ray 

photoelectron spectroscopy (XPS).^ * Secondly, slight damage is inflicted upon the sp2 

carbon lattice and layers may be removed. Finally, electrodes that are pretreated by 

electrochemical methods have higher background currents compared to polished surfaces. 
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Table 5. Activation of carbon electrodes by mechanical abrasion.* 

Electrode Polishing Protocol Result 
Glassy Carbon 1.) Polish with 600-grit SiC 

2.) 30-, 6-, 1 pm diamond 
paste 

3.) water rinse 
4.) 0.05 |im Alumina 

Fe(CNV"*4" reaction rate increases 

Glassy Carbon 
WIGE 

1.) Polish with 0.3 |im Alumina 
2.) H2SO4 rinse 

Kinetics for Fe5-'2* greater after 
dipping in H2SO4 

Glassy Carbon 1.) Polish with 200-, 400-, 600-
grit SiC 

2.) Ultrasonicate in H%0 (10 
minutes) 

3.) I-. 0.3-, 0.05-um Alumina 
4.) Ultrasonicate in H%0 (10 

minutes) 

Fe(CN)63"4" reaction rate increases 

Table 6. Effect of ECP on some carbon electrodes.* 

Electrode Method Result 
HOPG (Basal plane) Oxidation at 1.5V (vs. SCE) Reduction rate ofFe(CNV" 

for 15 minutes increases 

HOPG (Basal plane) Oxidation at 1.4V for 20 Oxidation rate of ascorbic 
minutes acid increases 

Glassy Carbon Oxidation at 1.8V for 5 Oxidation rate of Fe(CN)6
4* 

minutes and -0.2V for 15 s increases 
after polishing 
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Plasma Treatment 

Another approach to increasing the amount of surface oxygen on the carbon surface is 

realized via the use of radio frequency (rf) or microwave oxygen plasmas. Typically, glassy 

carbon or HOPG electrodes are subjected to a 0.5 h exposure at a pressure of 150 mTorr 0% 

that results primarily in the formation of carboxyl and hydroquinone oxygen containing 

groups.1*3 Furthermore, modification of both the basal and edge plane occurs.-*** in addition 

to oxygen as a plasma gas, research into other reagent gases has been conducted. Plasma 

gases such as water, carbon dioxide, chlorine, nitrogen and ethylenediamine have been used 

to alter the surface composition of glassy carbon substrates. Table 7 summarizes the atomic 

ratios from XPS analysis of glassy carbon electrodes that have been exposed to several 

different reagent plasma gases. ̂  5 

Investigation of HOPG surfaces by atomic force microscopy (AFM) after microwave 

oxygen plasma treatment shows that even at low microwave powers pit formation is 

common.-*** Additionally, scanning electron microscopic (SEM) examination of glassy 

carbon substrates indicates that rf-plasmas cause some erosion."*? 

Despite the slight damage inflicted upon the carbon surface, plasma treatment still 

holds many advantages. First and foremost, it is a rapid, reproducible, and contaminant-free 

method for enhancing the electrochemical response of the electrode. Additionally, the 

plasma treated surfaces may be further treated with a secondary reagent, such as 

tnfluoroacetic acid, to alter the surface composition. 
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Table 7. Results of several plasma treatments on a glassy carbon electrode.33 

Plasma Gas O/C N/C Cl/C 
As Polished 0.144 — — 

OZ 0.248 — — 

H20 0.226 — -

CO2 (dry ice) 0.265 — 

CO 0J04 — — 

CL2 0.139 — 0.185 
CH2CI2 0.102 0.649 

N2 0.090 0.140 — 

NH3 0.056 0.120 — 

Ethvlenedi amine 0.055 0.175 — 

Hvdrazine 0.046 0.154 —^ 

In-situ Laser Activation 

Activation of carbon substrates is also accomplished by exposing the electrode 

surface to short duration, high-intensity pulses in air or in solution. This method of treatment 

increases the rate of heterogeneous electron transfer by one to three orders of magnitude/*? 

decreases the O/C ratio.3® and is most likely due to the exposure of active sites via the 

removal of chemi- and physisorbed impurities.31-3-

As evidenced by S EM. scanning auger microscopy (SAM). Raman spectroscopy, and 

profiliometry, there are no detectable differences between a laser treated electrode and one 

that has been prepared by mechanical polishing/*? However, it is possible ablate the 

electrode surface, although this is not necessary for improving the electron transfer rate.3® 
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Vacuum Heat Treatment (VHT) 

Vacuum heat treatment (VHT) entails heating a glassy carbon substrate to —725 °C at 

pressures less than 2 x 10"* Torr to avoid reactions associated with exposure to air after 

heating. Although the effective surface area of the electrode is not increased, this protocol 

serves to remove oxygen surface groups, and hence one observes a dramatic reduction in 

background charging current.56 

Use of Carbonaceous Material in Chromatographic Applications 

High Performance Liquid Chromatography (HPLC) 

Carbon based materials have received much recent attention in the arena of separation 

science. As a prime example, porous graphitic carbon (PGC) (marketed by ThermoQuest 

Hvpersir® as Hvpercarb™) has been developed as a stationary phase for high performance 

liquid chromatography (HPLC) because of its attractive and unique properties.3? 

Conventional reversed stationary phases (e.g. octadecylsilica, ODS) generally involve 

the use of a silica support whose siloxane bonds are subject to hydrolysis at both low and 

high pH. Additionally, these silica phases are ineffective in separating structurally similar 

compounds such as geometric isomers. Due to its stable carbon framework, the performance 

of PGC stationary phases is not affected by pH, therefore it is functional at both pH extremes. 

Furthermore. PGC allows for the separation of both polar and nonpolar compounds since the 

retention mechanism is based on /r interactions and subsequent charge-induced interaction 

with the extensive aromatic network of carbon atoms. 
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In addition to using PGC as a new reversed stationary phase, some researchers have 

modified the carbon surface via dynamic adsorption or coating the PGC particles with a 

modifier. For example, chiral selection may be achieved by adsorption of Lasalocid  ̂ or 

poly-L-Ieucine3? on PGC. Coating the PGC particles with Cellulose Tris(3,5-

dimethylphenyl carbamate)^® also results in a chiral carbon stationary phase. 

Electrochemically Modulated Liquid Chromatography (EMLC) 

The use of carbon-based stationary phases in chromatographic separations has been 

furthered by the concept of electrochemically modulated chromatography (EMLC), which 

interfaces electrochemistry with HPLC. The notion of application of potential to 

chromatographic supports is not unprecedented in literature. Several researchers have 

attempted to effect separations of various analytes by electrochemical manipulation of 

retention on graphitic supports or electroactive ion exchange polymers.6l-63 

In our research group, EMLC is brought to fruition by designing a chromatographic 

column that incorporates aspects of an electrochemical system. Briefly, a porous stainless 

steel tube (the counter electrode) is fitted with a Nafion® ion-exchange membrane and 

packed with a conductive stationary phase (PGC or GC spheres) that serves as the working 

electrode. A silver/silver chloride reference electrode is then placed externally in an 

electrolyte reservoir as illustrated in figure 9. 

Demonstration of EMLC as a viable separations method has been realized through the 

separation of many analytes including substituted aramatics. corticosteroids, and charged 
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species.64-74 ^ each case, the separation can be manipulated by changes in applied 

potential. 

Modification of Carbon Substrates 

Carbonaceous materials may be chemically modified to enhance their 

performance in a target application There are three main methods to modify carbon 

substrates, including covalent modification, adsorption3 8-60.75-95^ and immobilization of 

AUXILIARY 
ELECTRODE 

non-conductive frit 

porous 
stainless 

steel 
tubing 

electrolyte 
reservoir 

^ REFERENCE 
ELECTRODE 

(Agf AgCL said. NaCl) 

Nafion® 
tubing 

WORKING 
ELECTRODE 

Carbon Stationary Phase 
Porous 1 

PEEK connector 
with Kel-F ring 

Graphitic 
Carbon J 
Glassy Carbon j- GC 

conductive stainless 
steel frit 

Figure 9. Column design for electrochemically modulated liquid chromatography. 
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the modifia: in a polymer film. 1 Of these, covalent modification will be emphasized in this 

section since the concept will be used throughout this thesis. 

Surface Group Reactions 

As previously illustrated in figure 8, several oxygen-containing moieties are found on 

carbon surfaces, whether inherently present or the result of pretreatment procedures. Many 

researchers have taken advantage of these surface groups to chemically modify carbon 

electrodes.96-101 Several different reagents and methodologies have been used for this 

purpose, and table 8 lists a few of the more common reaction schemes.* In many cases, 

oxidation, electrochemically or by rf-0% plasma, is necessary prior to modification to 

increase the number of O-containing groups for attachment. 

Although the nature of the electrode surface can be altered in this fashion, many of 

the reactions, particularly silamzation. are sensitive to moisture in the reaction environment. 

Additionally, it is difficult to have reproducible surface coverages since the concentration of 

oxygen-containing groups varies from electrode to electrode. 

Direct Reaction with the Aromatic Network 

A more robust approach to modifying a carbon electrode surface is realized through 

the generation of radical species that rapidly insert into the carbon-carbon framework, 

forming a covalent bond between the modifier and the surface. In sharp contrast to surface 

group reactions, functionalization with radicals is not dependent upon the surface oxygen 

concentration. Therefore, the resulting coverage of the modifier is much higher and the 
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chemical reagents. 

There are several methods to generating radicals that have precedent in literature 

including the electroreduction of arenediazonium salts102-107^ oxidation of ary (acetates*® 8-

m. anodization of amines**3.1 *-** *^ and alcohols* *^~* *6. and the photogeneration of 

nitrenes. * * ? With the exception of nitrene formation, each of these methodologies involves 

the generation of the radical species at an applied potential, with subsequent insertion of the 

radical species into the carbon framework of glassy carbon or HOPG. 

Table 8. Reaction schemes for modifying carbon electrodes via surface groups. * 

Reaction Type Reaction Scheme 
Silanization 

Amidization 

Esterification 

Ether Bond Formation 

>c -» >c-OH 
XZ-OH -r XSiXzR -4- >C-0-SiX2R + HX 

>C -> XT-OOH 
xr-ooH i- soo2 -> x:(0)ci+so2 + HCI 
XT(0)0 + H2NR -» >C(0)NHR +• HCI 

>C-> XT-OH 
XT-OH - RC(0)C1 -» >C-0-C(0)R + HO 

X: XT-OH 
XT-OH +• R-F -> XZ-O-R -r HF 

Electroreduction of Arenediazonium Salts 

The modification of glassy carbon and HOPG electrodes by an electrogenerated arene 

radical from an arenediazonium salt in anhydrous media (0.1 M tetrabutylaramomum 

tetrafluoro borate in acetomtrile) is illustrated in figure 10. In this mechanism, an arene 
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radical, formed from the corresponding arenediazonium salt at reducing potentials, rapidly 

inserts into a C-C bond of the electrode surface forming a covalent bond. Recent 

investigations of the modified surfaces by scanning probe microscopy (SPM) suggest that 

some of the radicals attach at defect sites on the electrode surface followed by subsequent 

attachment to the arene rings of the species at the defect sites to form a film. * * * Regardless 

of the exact mechanism, the resulting film is very robust and can only be removed via 

mechanical abrasion Additionally, the surface concentration of the modifying species is 

significantly higher than that achieved by using surface group reactions. 

Oxidation of Ary(acetates 

Perhaps the oldest electro-organic reaction involves the oxidation of carboxylates 

termed the Kolbe reaction. When conducted in the presence of a glassy carbon or HOPG 

e l e c t r o d e ,  t h e  b e n z y l  r a d i c a l  g e n e r a t e d  m a y  i n s e r t  i n t o  t h e  C - C  f r a m e w o r k  ( f i g u r e  I I )  i n a  

silimar fashion as that described for the electroreduction of arenediazonium salts. 

Once again, the covalent bond formed is very robust. However, films formed by this 

method may be "erased" simply by stepping the applied potential anodically in fresh 

electrolyte. Additionally, if the applied potential is move more positive in the presence of the 

carboxylate modifier, a second layer of modifying species is attached to the remaining sites 

on the electrode surface. 

The surface concentration of arene groups is on the order of that for the 

arenediazonium approach, - I0~t0 mol/cm1 as determined from employing Dreiding models 

to analyze scanning tunneling microscopy (STM) images. *08 
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glassy carbon glassy carbon 

Figure 10. Mechanism for modification by electroreduction of an arenediazonium salt. 
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Figure 11. Mechanism for the EColbe reaction. 
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Oxidation of Amines and Alcohols 

Another electrochemical approach that grafts a functional group to a carbon electrode 

is found in the oxidation of amines and alcohols. In both cases, an anodic potential generates 

a radical cation that inserts into the aromatic structure of either glassy carbon or HOPG. 

Films of alkylamines65_ alkanols* 16, and polyethylene glycols have been prepared 

to suppress protein adsorption and aniline-based species have been employed for future use 

in polyoxometalate monolayer formation 

Nitrene Insertion 

A final example of a covalently modified carbon surface is via the insertion of a 

photogenerated nitrene. Since the nitrene is photochemically generated from an azide 

precursor, this chemistry is ammenable to photopatteming.il? To this end, the surface of 

glassy carbon has been patterned with photobiotin using maskless photolithography to 

generate micrometer-sized domains for subsequent attachment of avidin. 

Conclusion 

Carbon is a versatile substance, available in many forms, which lends itself to many 

facets of chemistry. In modem times, carbon powders are found as adsorbents in water 

purification systems, carbon fibers are used in dressings for wounds, and carbon 

microelectrodes are being used to study the electrochemistry of the brain. With its extensive 

applicability, carbonaceous materials have assured their position in the future of analytical 

science. 
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hi this dissertation, carbon powders, specifically porous graphitic carbon and glassy 

carbon, are employed as electrochemically tunable stationary phases in electrochemically 

modulated liquid chromatography (EMLC). These materials are not only used in their native 

state, but are also effectively modified by eiectroreducing an arenediazonium salt at the 

surface. The modification protocol is straightforward, and imparts intriguing properties to 

the stationary phase. 

Building on the utility of arenediazonium electroreduction, a mercaptoarene-

diazonium salt can be used to prepare a covalently bound thiol-terminated film on a glassy 

carbon electrode. The thiol terminus can be further exploited as an attachment point for gold 

nanoparticles. This methodology can be extended to the development of novel stationary 

phases m nanoscale chromatographic applications. 

A second extension of EMLC entails the consideration of ferrocene-based mobile 

phase chiral selectors that may have enhanced selectivity at applied potentials. These chiral 

selectors must be stable at applied potentials from -500 to -500 mV (vs. Ag/AgCl. satd. 

NaCl) and have the appropriate chiral appendages to provide interaction points for 

enantiomeric analytes. 

Finally, carbon-like properties can be imparted to gold substrates by modification 

with benzenehexathiol (BHT). Due to the planar arrangement of arene rings, the BHT 

monolayer has electrochemical behavior similar to thai of a polished glassy carbon electrode, 

and provides a convenient method to alter the surface properties of gold. 

The use of carbon and gold substrates and the modification agents for each will be 

discussed further in subsequent chapters. 
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Abstract 

This paper describes a new strategy for the creation of chemically modified 

carbonaceous stationary phases. The strategy exploits the electroreduction of 

arenediazonium salts as a means for functionalizing the surface of glassy carbon (GO) and 

porous graphitic carbon (PGC) stationary phases. The one-electron reduction of these salts 

forms an arene radical which then couples via a carbon-carbon linkage to the carbon 

framework at the surface of the stationary phase. Two arenediazomum-based modifiers were 

used in evaluating the potential utility of this strategy: 4-nitrobenzenediazonium 

tetrafluoroborate for the GO and PGC phases and 4-hexylbenzenediazomum 

tetrafluoroborate for only the PGC phases. Modifications were carried out by packing the 

phases into a column used for electrochemically-moduiated liquid chromatography. The 

effectiveness of the modifications was assessed by X-ray photoelectron spectroscopy and by 

comparing the liquid separation of a series of mixtures before and after coating deposition. 

For the nitrobenzyl-modified GO phase, the test mixture contained both anisoie and 

fluoranthene. The performance of the rutrobenzyi- and hexylbenzyl-modified PGC 

stationary phases was characterized by the separations of substituted phenols (i.e.. 
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nitrophenol and resorcinol) and a few important pharmaceutical agents (i.e., hexobarbital. 

oxazepam, and nitrazepam). The potential utility of this modification procedure to form 

stationary phases that are stable upon extended exposure to aggressive mobile phases is 

discussed and briefly examined 

Introduction 

Porous graphitic carbon (PGC) is an extremely stable (pH 0-14 l*2), hydrophobic 

stationary phase. Its microscopic surface structure, coupled with a strong it-electron 

character, facilitates the separation of a wide variety of analytes 1. The hydrophobic 

character of PGC has also been exploited as a basis for creating chiral stationary phases by 

the dynamic adsorption of different types of enantiomers 5"6. 

hi our laboratory "t5. we have been taking advantage of another property of PGC - its 

intrinsic conductivity - in exploring the range and scope of electrochemically modulated 

liquid chromatography (EMLC) as an intriguing variant to LC "t0. EMLC works by altering 

analyte retention through the changes in the donor-acceptor properties that result from 

manipulating the potential applied to a conductive stationary phase like PGC. Thus, EMLC 

provides a means to enhance the efficiency of a separation without the use of the gradient 

elution strategies often required by LC to address the analysis of complex samples. We have 

shown, for example, that EMLC can be readily applied to the separation of mixtures ranging 

from structurally similar corticosteroids 11 to racemates of important pharmaceutical agents 

l"I5. The advantages of the on-line coupling with electrospray mass spectrometry (ES-

MS) have also recently been demonstrated in a collaboration with Van BerkeFs group. The 

goal was to exploit the ability of EMLC to separate complex samples without the associated 
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changes in ionization efficiencies which arise from a changing mobile phase composition and 

degrade ES-MS performance t6. The range and scope of EMLC as a new separation tooL 

including work in other laboratories, has recently been reviewed l0. 

This paper reports on our exploration of another facet of combining PGC and EMLC 

- the ability to functionalize the surface of PGC by using electrochemically-based processes. 

The goal was to synthesize PGC phases that would function more like the widely-used 

bonded phases based on silica supports and silane-coupling chemistry. In examining the 

many strategies for modifying carbonaceous materials l "20 (e.g. plasma treatment2I~~, 

hydrogénation24. electropolymerization25"28, and dynamic adsorption we opted to utilize 

the electroreduction of arenediazonium salts. As developed and expanded upon by the 

Savéant29-31. Pinson "2. McCreery "3, and McDermott34 laboratories, the one-electron 

reduction of arenediazonium salts forms an arene radical that inserts itself into the carbon 

framework of the electrode surface through a carbon-carbon linkage. By carefully 

controlling the reaction conditions "5. a monomolecular coating can be formed that can only 

be removed by mechanical abrasion. Based on these findings, we projected that the 

versatility of this type of derivatization strategy could be used to create new families of 

carbon-based stationary phases that would parallel the performance of the many types of 

silica-based bonded phases. We further hypothesized that the linkage chemistry for these 

new arene-modified phases would show exceptional stability upon exposure to aggressive 

mobile phases (i.e.. phases inducing the hydrolysis of the Si-O linkages), potentially 

addressing one of the long standing weaknesses of silica bonded phases36-39. 

Herein, we describe our first results using the reduction of arenediazonium salts to 

modify both glassy carbon (GC) and PGC particles. Two modifiers are used: 
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tetrafluoroborate (HBDT). Following electrodeposition (Scheme 1), these new phases were 

characterized by X-ray photoelectron spectroscopy (XPS), and then applied to the LC 

separation of a series of mixtures to assess the effectiveness of the coating process. 

Experiments to test the stability of the modified PGC stationary phases upon extended 

exposure to aggressive mobile phases were also conducted. The potential utility of this 

modification strategy for the creation of a wide range of functionalized stationary phases 

using carbonaceous materials is discussed. 

Experimental Section 

Reagents 

Uncoated GC (Sigridur G, diameter ~6 pm after sieving; Brunauer-Emmet-Teller 

(BET) surface area 1.76 ± 0.02 m"g"1) or PGC spheres (Hypersil®. diameter ~7 jim as 

received: BET surface area 91.82 ± 0.51 mzg-i) were used as stationary phases. Lithium 

perchlorate. diiodomethane, sodium tetrafluoroborate. 4-hexyIaniIine. trifluoroacetic acid 

(TFA), tetrabutylammonium tetrafluoroborate (TBAT), anisole (AN), fluoranthene (FL), 3-

nitrophenol (NP), resorcinol (RS), and 4-mtrobenzenediazonium tetrafluoroborate (NBDT) 

were purchased from Aldrich; hexobarbital (HB), oxazepam (OZ) and nitrazepam (NZ) from 

Sigma; and acetonitrile (HPLC grade), acetone, methanol (HPLC grade), toluene, sodium 

hydroxide, sodium hydrogen phosphate, sodium dihydrogen phosphate, sodium nitrite, 

hydrochloric acid, 4 À molecular sieves, and magnesium sulfate from Fisher. All column 

modification procedures used acetonitrile that was dried over anhydrous magnesium sulfate, 

and distilled and stored over 4 À molecular sieves. Tetrabutylammonium tetrafluoroborate 
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was dried at 110 °C in an oven prior to solution preparation. All other chemicals were used 

as received. HBDT was prepared according to a modified literature procedure3Z. All 

aqueous solutions were made with deionized water from a Millipore Milli-Q purification 

system. 

Instrumentation 

A Waters model 600E pump controller, model 610 pump, and valve station were used 

as the chromatographic system and a Waters 996 photodiode array detector as the detector. 

The detection wavelengths (À^) were either 254 ran or 220 nm. Solutions were introduced 

onto the chromatographic column via a 5-uL injection loop (Rheodyne model 7413). 

Chromatographic columns were packed using a Shandon slurry column packing system using 

a previously described procedure . The dead volume of the columns were -0.2 mL. The 

design and fabrication of columns used in EMLC have also been extensively detailed 9. 

Applied voltages ( E^,) were controlled by a Princeton Applied Research model 173 

potentiostat/gaivanostat. Cyclic voItammograms were recorded on a Houston Instruments 

2000 X/Y. 

XPS data were obtained using a Physical Electronics Industries 5500 surface analysis 

system equipped with a hemispherical analyzer, torroidal monochromator, and multichannel 

detector. Monochromatic aluminum Ka radiation ( 1486.6 eV) at 300 W was used for 

excitation. Binding energies were referenced to the C( Is) emission band at 284 eV. The 

pressure in the XPS chamber was less than I x 10"* Torr during analysis. The surface areas 

of the GC and PGC particles were determined using an ASAP 2010 BET surface analyzer. 
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Electrochemical evaluation of NBDT and HBDT 

The electroreduction ofNBDT and HBDT was studied at a glassy carbon plate 

electrode (GC-20, Tokai) prior to on-column modification. All GC electrodes were polished 

sequentially with 1.0 pm, 0 J jam and 0.05 um alumina powder (Buehler)j3. After polishing, 

the electrodes were sonicated for 10 min in deionized water followed by 10 min in 

acetonitrile, and dried under a directed stream of high purity nitrogen. Acetonitrile solutions 

of 10 mM NBDT or HBDT, containing 0.1 M TBAT, were used as the modifier and 

electrolyte, respectively, in a standard three-electrode electrochemical cell. Solutions were 

purged with high purity nitrogen for 3 min before the potential was scanned, and an inert 

atmosphere of nitrogen was maintained above the solution in the electrochemical cell at all 

times. Applied potentials were referenced against a silver/silver chloride electrode (sat'd. 

NaCI) with a platinum coil as the auxiliary electrode. 

On-column functionalization by NBDT and HBDT 

A freshly packed EMLC column was rinsed with anhydrous acetonitrile for I h. This 

step was followed by elution of 0.1 M TBAT in anhydrous acetonitrile at 0.40 m f 7min for 1 

h at Egppt of-255 mV. The external electrolyte reservoir was filled with 0.1 M TBAT in 

acetonitrile. A solution of 50 mM NBDT and 0.1 M TBAT in acetonitrile was then passed 

through the column (0.40 mL/min) at Eappi = -255 mV for 5 h. After a 5 h modification 

period, the column was rinsed for I h with a flowing solution of neat acetonitrile. 

Carbon columns were modified with HBDT following the same procedure used for 

modification with NBDT. With HBDT, however, the modification was conducted at E.^ = -

800 mV for 5 h by using a 40 mM solution of HBDT and 0.1 M TBAT in acetonitrile. These 
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potentials were chosen based on the voltammetry of NBDT and HBDT at a GC plate 

electrode. 

We add that arenediazonium salts will react slowly over time to form the 

corresponding azo dye 40. Using anhydrous acetonitrile and dry electrolyte in each step of 

the modification, however, maintains the integrity of the modifier. Degradation of the 

modifier is easily detected since solutions of the diazonium salt are yellow and gradually turn 

a vibrant red upon conversion to the azo dye. 

Chromatographic separations 

Two mobile phase compositions were used: Mobile phase A consisted of 50:50 

acetonitrile:H^G (0.1 M lithium perchlorate), and Mobile phase B consisted of 100% 

methanol. Three different analyte mixtures were used. Analyte Mixture I was 300 ppm 

anisole and 100 ppm fluoranthene in acetonitrile. Mixture 2 was 170 ppm 3-nitrophenoI and 

400 ppm resorcinol in methanol, and Mixture 3 was 100 ppm each in hexobarbital. 

oxazepam, and nitrazepam in methanol. The temperature of the chromatographic system was 

not regulated. 

Evaluation of stability in aggressive mobile phases 

The stability of 4-nitrobenzene (NB) and 4-hexyibenzene (HB) modified PGC 

stationary phases was tested using two different mobile phase compositions: Mobile phase C: 

50:50 acetonitrilerH^O (0.1% TFA. pH = 1.5), and Mobile phase D: 50:50 acetonitrile JlzO 

(20 mM NazHPO*, pH = 11.0). The tests, which mimic those used in evaluations by others 

41. were conducted at room temperature by first passing Mobile phase C through the column 

for —2000 min, followed by Mobile phase D for —2000 min. The flow rate in both cases was 

0.5 mL min. A 300 ppm solution of toluene in methanol was injected periodically over the 
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exposure time to assess the effect of exposure on k' (defined as t-to/to, where t = retention 

time and to = retention time of injection peak). 

Results and Discussion 

Electrochemistry of NBDT and HBDT at a GC electrode 

As a starting point, the electrochemistry of both NBDT and HBDT was investigated 

using a GC electrode to identify the appropriate conditions for column modification. 

Successive current-potential (/-£) curves for a 10 mM solution of NBDT using 0.1 M TBAT 

in acetonitrile as the electrolyte are presented in Figure 1. A large, irreversible cathodic 

wave is observed in the first scan that dramatically decreases to near background levels with 

successive scans. The cathodic wave is attributed to the electrode reaction in Scheme I, and 

the marked decrease in current in each of the subsequent scans is diagnostic of the strong 

passivation of the electrode by the formation of the organic monolayer coating 29~32. The 

same general behavior is observed upon the repetitive voltammetric cycling for a GC 

electrode immersed in electrolyte containing 10 mM HBDT. However, because of the 

difference in donor-acceptor strengths of the hexyl- appendage of HBDT with respect to the 

nitro- appendage of NBDT, the one-electron reduction of the diazomum group for HBDT is 

shifted negatively by —550 mV. Based on these data, we opted to use an applied potential of 

-255 mV for modification of our columns with NBDT and of-800 mV for modification by 

HBDT. 

XPS characterization of NB-modified GC electrode 

XPS was used to characterize the composition of the NB coating as well as to 

estimate its surface concentration 29-33 (a characterization of the HB-modified electrode was 
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not performed since the composition of the modifier would be indistinguishable from the 

substrate). Prior to XPS analysis, the modified GC electrode was extensively sonicated in 

acetonitrile to remove any unreacted modifier and then dried under a directed stream of high 

purity nitrogen. Figure 2 presents the XPS spectra for an unmodified (a) and NB-modified 

(b) GC electrode; the corresponding atomic percentages are reported in Table 1. A freshly 

prepared GC electrode shows only two bands, one at 284 eV for C(ls) electrons (89.8 atomic 

%) and one at 532 eV for O(Is) electrons (10.2 atomic %). However, the spectrum after 

modification with NBDT displays a band for the N(ls) electrons (12.0 atomic %) of the NO: 

moiety at 406 eV. A much smaller band at 400 eV is also evident, which likely arises from 

the reduction of the nitro group to an amine group during the electroreduction of the 

diazonium salt35. These results are consistent with the expected composition of the coating. 

The XPS data were also used to estimate the surface concentration of the coating 

from the signal strength in the N( Is) region. Thus, the surface concentration of nitrogen-

containing aromatic groups on the GC electrode was calculated by multiplying the ratio of 

the total area under the two N( Is) bands with respect to the C( Is) band by a factor of 7.3 x 

10'4 mol/cm". This factor is the surface density of the carbon atoms for basal plane graphite, 

and was used as a rough approximation of the much more complex surface of GC. This 

approach yields a surface concentration for the NB-modified GC electrode of 12 x 10"* 

mol/cm2. This value is similar to that previously reported for carbon electrodes modified 

with a NB-monoIayer "3. suggesting that this derivatization strategy can be used to prepare 

carbonaceous phases coated with a single molecular layer. 
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On-column modification of carbon stationary phases 

The electrochemical functionalization of carbon in spherical form is significantly 

more difficult than that of carbon in planar form when considering the difficulties associated 

with uniformly coating small particles (5-10 pm diameter) in a packed column. Our first 

experiments used NBDT as a modifier. 

Upon completion of modification processes described in the Experimental Section, 

the stationary phases were first analyzed by XPS. Figure 3(a) presents a typical XPS 

spectrum for the unmodified GC spheres. Like the GC electrode, the spectrum shows a band 

at 284 eV for the C(ls) electrons and a band at 532 eV for the O(ls) electrons from oxygen-

containing groups. After modification of both GC and PGC spheres, a band (406 eV) 

indicative of the presence of a NO% group is observed (see Figures 3(b) and 3(c)). A band for 

an amine-nitrogen is also evident, but at a much lower intensity in the case of the NB-

modified GC particles; the basis for the disparity in intensities is uncertain at this time 33*42. 

Because of the sphericity and/or porous structure of the two types of particles, 

estimates of the surface concentrations of the modifier were viewed as unreliable. We, 

therefore, report only the atomic concentrations of C, O and N from the XPS data. These 

data are summarized in Table L which includes values for unmodified and modified GC and 

PGC spheres for comparative purposes. For both NB-modified GC and PGC, the atomic 

concentration of nitrogen is at least an order of magnitude greater than that for the analogous 

unmodified spheres, confirming the presence of the organic coating on the surfaces of the 

two types of particles. 
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Chromatography of aromatic compounds on a NB-modified GC column 

Nitro-based silica stationary phases are commonly used for the separation of mixtures 

of polyaromatic hydrocarbons (PAHs) and aromatic pesticides via moderate electron donor-

acceptor interactions 43. Coupled with inherent difficulty in eluting PAHs from carbon-based 

stationary phases, we therefore chose anisole (AN) and fluoranthene (FL) (i.e.. Mixture 1) as 

analytes for an initial assessment of the effect of nitrophenyl modification on the retention of 

GC stationary phases 44'45. 

The chromatograms in Figure 4 present the separation of Mixture I using an 

unmodified GC column (a) and a NB-modified GC column (b). In the case of the 

unmodified GC spheres, AN elutes within -0.5 minutes after injection. FL, in contrast, is 

strongly retained on the column, requiring a very high concentration of organic modifier 

(98%) for elution. This high of an acetonitrile concentration, however, causes the co-elution 

of both analytes. 

After treatment of the GC column with NBDT. a dramatic difference in analyte 

retention is observed. Two elution bands are now present with AN eluting before FL. 

We note, however, that the elution band for FL is slightly tailed. We suspect that this tailing 

may arise from pinholes in the NB-coating, which results in 7t-Jt interactions with the 

underlying GC surface. Importantly, this result confirms that: 1) the NB-coating effectively 

masks the strong interactions that caused the irreversible adsorption of FL on uncoated GC; 

and 2) the derivatizaiion procedure provides a facile means to create a modified carbon-based 

stationary phase. The next section examines the effectiveness of using this modification 

strategy to functionalize PGC. which is a more complex 2, but much more extensively used, 

stationary phase l. 
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Comparison of NB and HB modified PGC to Hypercarb® 

PGC was modified with NBDT and HBDT using the same procedure as for the GC 

spheres. After derealization, both the NB and HB-modified PGC stationary phases were 

packed into a stainless steel HPLC column, and the resulting separations were compared to 

those using a Hypersil® Hypercarb® PGC column of the same dimensions. The 

chromatographic separations of Mixture 2, which contains 3-nitrophenol (NP) and resorcinol 

(RS), and Mixture 3, which is composed hexobarbital (HB), oxazepam (OZ) and nitrazepam 

(NZ), are shown in Figures 5 and 6, respectively, for the NB-modified PGC (a), the HB-

modified PGC (b) and Hypercarb® (c). 

As is evident, modification of PGC spheres with both NBDT and HBDT results in a 

marked change in retention. In all three cases, the elution of the two components of Mixture 

2 follows the same order, with NP eluting before RS. However, the time required to fully 

elute the mixture at the modified phases is much less than at the unmodified phase. The 

results for the three different separations of Mixture 3 exhibit the same trend (Le., HB eiutes 

before OZ, followed by NZ). 

tn comparing the performance of the two types of modified PGC, the retention times 

for all five of the test compounds in Mixtures 2 and 3 are longer at the HB-modified 

stationary phase. This difference parallels those established in the literature of silica bonded 

phases46. In other words, the affinity of the HB-modifier for NP, RS, HB, OZ and NZ is 

greater than that of the NO% modifiers. 

Stability of NBDT and HBDT stationary phases to aggressive mobile phases 

One of the benefits of using a PGC-based stationary phase, in addition to its 

compatibility with organic solvents and absence of swelling, is its stability upon exposure to 
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extremes in pH l. This situation is in marked contrast to conventional reversed phase silica 

stationary phases, which are prone to degradation in both strongly acidic and strongly basic 

solutions j6~39. It is therefore of great importance to evaluate the stability of our 

ftmctionalized PGC stationary phases upon extended exposure to mobile phases of high and 

low pH. 

This assessment was conducted using a HB-modified PGC stationary phase and 

toluene as the test analyte 4'. As described in the Experimental section, the ftmctionalized 

stationary phase was first exposed to Mobile phase C (50:50 acetonitriletiiO (0.1% TEA 

(pH 1.5» at a flow rate of 0.5 mlvmin for —2000 min, and then to Mobile phase D (50:50 

acetonitrile JiiO (20 mM NazHPQt (pH 11.0)) for -2000 min. Toluene was injected 

periodically into the running mobile phase in order to determine the effect of these treatments 

on retention. 

The results are presented in Figure 7 by a plot of the observed k' for toluene as a 

function of exposure time. Throughout the duration of the experiment, the performance of 

the column is only marginally diminished. That is, the retention character of the HB-

modified PGC stationary phase is decreased by only —11% by the exposure of —4000 column 

volumes of Mobile phase C, followed by -4000 column volumes of Mobile phase D. Albeit 

only preliminary, these results indicate that HB-modified PGC is less susceptible to 

degradation under these types of mobile phases than many of the commercially available 

bonded phases,41 demonstrating the potential utility of using the electroreduction of 

arenediazonium salts as a means for preparing a new family of stable, chemically 

ftmctionalized stationary phases. 
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Conclusion 

This paper has demonstrated the capability to chemically manipulate the surface of 

carbon-based materials used as stationary phases for LC separations. The derivatizaiion can 

be easily carried out by the on-column electroreduction of arenediazonium salts, yielding, as 

a consequence of the linkage chemistry, a modified coating that is chemically stable under 

conditions generally detrimental to the performance of silica-based bonded phases. In view 

of the ease in which these compounds can be synthetically manipulated, we believe thai this 

methodology can be applied at the same level of flexibility to other arenediazonium salts, 

(e.g.. an octadecvl-like phase based on the electroreduction of 4-octadecylbenzenediazonium 

tetrafluoroborate). This strategy therefore opens a wide range of possibilities for creating a 

new family of stable, chemically modified stationary phases. Efforts to both explore the 

potential of this type of stationary phase and to further assess its stability under a wide range 

of mobile phases are underway. 

Acknowledgment 

Helpful discussions with M.T. McDermott and R.L. McCreery are gratefully 

acknowledged. J A_H. wishes to acknowledge the Phillips Petroleum Company for a 

research fellowship. This work was supported by the Office of Basic Energy Research. 

Chemical Sciences Division of the U S. Department of Energy and by the Microanalytical 

Instrumentation Center of Iowa State University. The Ames Laboratory is operated for the 

U.S. Department of Energy by ISU under Contract W-7405-Eng-82. 



www.manaraa.com

53 

References 

(1) Majors, R. E. LC-GC 2000,18,14-27. 

(2) Knox, J. H.; Kaur. B. High Performance Liquid Chromatography, John Wiley 

and Sons: London, 1989. 

(3) Sandberg, A.; Markides, K. E.; Heldin, E. J. Chromatogr. A 1998,828,149-

156. 

(4) KLelley, E. J.; Haddleton, D. M.; Croat, D. H.; Ross, P.; Button, J. Chem. 

Comm. 1999,13, 1233-1234. 

(5) Monser, L. L; Greenway, G. M. Anal. Comm. 1996,33,65-68. 

(6) Grieb, S.; Matlin, S.; Belenguer, A.; Ritchie, H.; Ross, P. J. High Res. Chrom. 

1995,18, 761-763. 

(7) Deinhammer, R. S.; Ting, E.-Y.; Porter. M. D. J. ElectroanaL Chem. 1993, 

362,295-299. 

(8) Deinhammer. R. S.; Ting, E.-Y.; Porter, M. D. AnaL Chem. 1995,67.237-

246. 

(9) Ting, E.-Y.; Porter, M. D. AnaL Chem. 1998, 70,94-99. 

( 10) Porter, M. D.; Takano. H. Encyclopedia of Separation Science; Academic 

Press: London. 2000,636-646. 

( I I )  T i n g ,  E . - Y . ;  P o r t e r ,  M .  D .  Anal. Chem. 1997,69,675-678. 

( 12) Wang, S.; Porter, M. D. J. Chromatogr. A 1998,828, 157-166. 

( 13) Ting, E.-Y.; Porter, M. D. J. Chromatogr. A 1998, 793,204-208. 

( 14) Ting, E.-Y.; Porter, M. D. J. ElectroanaL Chem. 1998, 443,180-185. 

(15) Ho, M.; Wang, S.; Porter. M. D. Anal. Chem. 1998, 70,4314-4319. 



www.manaraa.com

54 

(16) Deng, H.; VanBerkeL, G. J.; Takano, H.; Gazda, D.; Porter, M. D. AnaL Chem. 

2000, 72,2641-2647. 

(17) Kinoshita, K. Carbon Electrochemical and Physicochemical Properties', 

Wiley Interscience: New York, 1988. 

(18) McCreery, R. L.; Cline, K. K. Laboratory Techniques in Electroanalytical 

Chemistry; Marcel Dekker, Inc.: New York, 1996. 

(19) Murray, R_ W.; Ewing, A. G.; Durst, R. A. Anal. Chem. 1987,59.379A-

390A. 

(20) Faulkner, L. R. Chem. Eng. Sews 1984, 62, 28-38,43-45. 

(21) Evans, J. F.; Kuwana, T. AnaL Chem. 1977,49,1632-1635. 

(22) Evans, J. F.; Kuwana, T. Anal. Chem. 1979,51,358-365. 

(23) Miller, C. W.; Karweik, D. H.; Kuwana, T. Anal. Chem. 1981,53.2319-2323. 

(24) Chen, Q.; Swain, G. M. Langmuir 1998, 14,7017-7026. 

(25) Nyffenegger. R. M.; Penner. R. M. J. Phys. Chem. 1996, 100,17041-17049. 

(26) Hwang, B.; Santhanam. R.; Wu, C.; Tsai, Y. Electroanalysis 2001,13,37-44. 

(27) Sabouraud, G.; Sadki, S.; Brodie, N. Chem. Soc. Rev. 2000,29,283-293. 

(28) Martin, C. R-; Dyke, L. S. V. Molecular Design of Electrode Surfaces; John 

Wiley: New York. 1992. 

(29) Delamar. M.; Hitmi, R.; Pinson, J.; Savéant, J. M. J. Am. Chem. Soc. 1992, 

114, 5883-5884. 

(30) Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.; Pinson, J.; 

Savéant, J. M. J. Ant. Chem. Soc. 1997, 119,201-207. 



www.manaraa.com

55 

(31) Delamar, M.; Desannot, G.; Fagebaume, O.; Hitmi, R.; Pinson, J.; Savéant, J. 

M. Carbon 1997,35, 801-807. 

(32) Bourdillon, C.; Delamar, M.; Démaillé, C.; Hitmi, R_; Moiroux. J.; Pinson. J. 

J. ElectroanaL Chem. 1992, 336, 113-123. 

(33) Liu, Y .-C.; McCreery, R. L. J. Am. Chem. Soc. 1995,117, 11254-11259. 

(34) Kariuki. J. K.; McDermott, M. T. Langmuir 1999,15, 6534-6540. 

(35) Andrieux, C. P.; Gonzalez, F.: Savéant. J. M. J. Am. Chem. Soc. 1997,119, 

4292-4300. 

(36) Wirth, M. J.; Faruranbi, H. O. Spécial Publications-R. Soc. Chem. 

f Chemically Modified Surfaces) 1994,139,203-209. 

(37) Wirth. M. J.: Fatunmbi. H. O. LC-GC1994,12,222-228. 

(38) Wirth. M. J.; Fairbank. R. W. P. J. Liq. Chrom. andRel. Tech. 1996, 19, 

2799-2810. 

(39) Wirth. M. J.; Fairbank. R. W. P. Science 1997,275.44-47. 

(40) March, J. Advanced Organic Chemistry, Wiley Interscience: New York, 1992. 

(41) Neue. U. D.; Walter. T. EL; Alden. B. A.; Jiang, Z; Fisk, R. P.; Cook. J. T.; 

Glose. K. H.; Carmody, J. L.; Grassi. J. M.; Cheng, Y.; Lu, Z.; Crowley, R. J. 

Amer. Lab 1999, 36-39. 

(42) Saby. C.; Ortiz. B.; Champagne. G. Y.; Bélanger, D. Langmuir 1997,13, 

6805-6813. 

(43) Bandh, C.; Ishaq, R.; Broman, D. Env. Sci. and Tech. 1996, 30,214-219. 

(44) Ross, P.; Knox. J. H. Adv. Chromatogr. 1997,37,73-119. 

(45) Li. J.; Carr, P. W. AnaL Chem. 1997,69,2202-2206. 



www.manaraa.com

56 

(46) Tanaka, N.; Sakagami, EL; Araki, M. J. Chromatogr. 1980,199,327-337. 

(47) Although the NB-modified PGC is relatively stable in acidic media, exposure 

to basic conditions results in the partial hydrolysis of the NCb moiety (40). 

Preliminary tests show a working pEi range of 1.5 to 7.0. 



www.manaraa.com

57 

Figure Captions 

Scheme 1: Procedure for the on-column modification of a carbon stationary phase 

particle via the one-electron reduction of an arenediazonium salt. 

Figure 1 : Voltammetry of 10 mM NBDT at a freshly polished glassy carbon electrode 

(scans 1-4). Electrolyte: 0.1 M TBAT in acetonitrile. Scan rate = 200 mV/s. 

Figure 2: XPS of an unmodified GC electrode (a) and of a NB-modified GC 

Electrode (b). Inset for Fig. 2b is the N( Is) region which shows the diagnostic 

emission for the nitrogen of an NO? group at 406 eV and an NH% group just below 

400 eV. 

Figure 3: XPS of unmodified, 6-um glassy carbon particles (a), of NB-modified 

GC particles (b). and of NB-modified PGC particles (c). Insets for Figs. 3b.c are 

the N( Is) region which shows diagnostic emission for the nitrogen of an 

SCh group at 406 eV and an NH% group just below 400 eV. 

Figure 4: Separation of analyte mixture 1 on an unmodified GC stationary phase (a), 

and of analyte mixture 1 on a NB-modified GC stationary phase (b). Mobile phase 

A was used at a flow rate of 0.50 mLmin. = 254 ran. 
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Figure 5: Separation of analyte mixture 2 on a NB-modified PGC stationary phase (a), a 

HB-modified PGC stationary phase (b), and a Hypersil® Hypercarb® column (c). 

Mobile phase B was used at a flow rate of LOO mL/min in all separations. Xdet = 

254 ran. 

Figure 6: Separation of analyte mixture 3 on a NB-modified PGC stationary phase (a), a 

HB-modified PGC stationary phase (b), and on a Hypersil® Hypercarb® column 

(c). Mobile phase B was used at a flow rate of 1.00 mf /min in all separations. Xu« 

= 220 nm. 

Figure 7: Long term stability of HB-modified PGC during sequential exposure to 

Mobile phase C (—2000 min) and Mobile phase D (— 2000 min) at a flow rate of 

0.50 mL min. Xdet = 254 nm. An injection of300 ppm toluene in methanol was 

made at each exposure time and kT ((-•-) Mobile phase C; (-*-) Mobile phase D) 

determined from the corresponding chromatograms. 
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Table 1. XPS atomic concentrations of C, O and N for unmodified and NB-modified 
GC electrodes and GC and PGC stationary phases. 

C(ls) O(ls) N(ls) 
Concentration Concentration Concentration 

Packing Material (atomic %) (atomic %) (atomic %) 

Unmodified GC Electrode 89.8 10-2 NDa 

NB-modified GC Electrode 71.4 16.6 12.0 
Unmodified GC Spheres 88.8 10.6 0.6 
NB-modified GC Spheres 75.4 16.6 8.0 
Unmodified PGC Spheres 100.0 0.0 ND 
NB-modified PGC Spheres 87.6 ~!_2 5.2 

1 ND- not detected 
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X = NO-,, NBDT r\ glassy carb0°. <GC)°r 

 ̂= Q6H13 HBDT = porous graphitic carbon 
(PGC) sphere 

Scheme 1 
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CHAPTER 2. MANIPULATION OF THE PROPERTIES OF POROUS GRAPHITIC 

CARBON STATIONARY PHASES: USE OF ELECTROCHEMICALLY 

MODULATED LIQUID CHROMATOGRAPHY TO CHEMICALLY MODIFY 

CARBONACEOUS MATERIALS 

A manuscript in preparation for submission to Journal of Chromatography' A 

Jennifer A. Hamisch and Marc D. Porter 

Micro analytical Instrumentation Center, Ames Laboratory-USDOE. and Department of 

Chemistry, Iowa State University, Ames, IA 50011 USA 

Abstract 

This paper describes the preparation and preliminary testing of a new family of 

stationary phase materials. These phases are prepared by the chemical modification of 

porous graphitic carbon (PGC) particles, a material becoming increasingly used in high 

performance liquid chromatographic separations. The modification process results from the 

eiectroreduction of arenediazonium salts (X-Ph-N%~, X = NOz, C^Hu, CioHzt, CtgHrzO, 

COiH), which is carried out after packing the particles in a column used in electrochemically 

modulated liquid chromatography. Using this methodology, several chemically modified 

stationary phases were created including 4-mtrobenzene (NB), 4-hexyIbenzene (HB), 4-

decvibenzene (DB), 4-carboxybenzene (CB) and 4-octadecyloxvbenzene (OB) modified 

PGC. The modification protocol and subsequent use of the modified PGC stationary phases 

in the separation of an analyte mixture containing hexobarbital. oxazepam and nitrazepam 

are reported herein. The OB-modified PGC stationary phase is also resistant to the 

adsorption of proteinaceous materials, specifically, cytochrome c and lysozyme, which 
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coupled with the stability of the modified stationary phases to aggressive mobile phases, 

points to the potential use of this strategy in creating a new class of reversed phase materials. 

Introduction 

Carbon-based stationary phases (e.g.. porous graphitic carbon (PGC)) have become 

invaluable in addressing some of the difficulties encountered in the separation of very polar 

analytes and geometric isomers when using conventional reversed phase materials such as 

octadecvlsilica (ODS)k Polar compounds, for example, are not strongly retained on ODS 

phases, and mixtures of structurally similar compounds are generally not well separated. An 

additional advantage of PGC phases is its inherent stability in aggressive mobile phases (e.g.. 

those at high and low pH). Silica-based stationary phases only have a useful pH range from 

4 to 8. since the Si-O tether between the modifier and silica surface is prone to hydrolysis at 

lower and higher pH. 

One of the limitations of PGC as a stationary phase is the irreversible adsorption of 

aromatic and proteinaceous materials caused by strong interactions between the 

graphitic planes of the carbon phase and the highly conjugated analytes. For example, in our 

own lab. we have found that even with high concentrations of organic modifier in the mobile 

phase, pvrene will not elute from the column. The recent literature has shown that elution 

can only be accomplished by operating at elevated temperatures-. It would therefore be 

advantageous to subtly decrease the strength of the z-it interactions of PGC while still 

maintaining its effectiveness to separate geometric isomers and polar compounds. One goal 

of this body of work is to test whether this may be accomplished by directly modifying the 
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PGC surface with an appropriate functional group much in the same way bonded phases 

based on silica are created. 

The modification of PGC stationary phases is not unprecedented. Several groups 

have anchored chiral selectors to PGC via adsorption-^, and coated PGC with a chiral 

cellulose derivative^. An intriguing and well-studied prospect for the modification of carbon 

substrates is found in the electroreduction of arenediazonium salts at carbon electrodes^ 5. 

In this approach, an arenediazonium salt (X-Ph-Nz "BF^) is reduced electrochemically to 

generate an areneradical species that will react with the graphene planes of the carbon 

electrode to form a covalently bound monolayer film* I. 

The electroreduction of arenediazonium salts may be easily extended to the 

modification of carbon particles by using electrochemically modulated liquid 

chromatography16-26 (EMLC) as a means to apply the necessary modifying potential to the 

PGC substrate. We have already reported on a preliminary examination of the covalent 

modification of glassy carbon (GO) and PGC stationary phases by the on-column 

electroreduction of 4-nitrobenzenediazonium tetrafluoroborate (4-NBDT)^. This paper 

furthers the scope of this investigation by preparing 4-nitrobenzene (NB), 4-hexyibenzene 

(HB), 4-decylbenzene (DB), 4-carboxybenzene (CB) and 4-octadecyloxybenzene (OB) 

modified PGC stationary phases and testing their use in the separation of a mixture of 

pharmaceutical agents. The stability of this type of phase upon exposure to mobile phases 

that generally degrade silica bonded phases is also examined. 
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Experimental Section 

Reagents 

Uncoated PGC spheres (Hypersil®, diameter -7 gm; BET surface area 91.82 ± 0.51 

mzg-1) was used as a stationary phase. Lithium perchlorate. diiodomethane, sodium 

tetrafluorobot ate, 4-hexylaniline, 4-aminobenzoic acid, 4-mtrobenzediazonium 

tetrafluoroborate (NBDT), trifluoroacetic acid (TFA), tetrabutylammonium tetrafluoroborate 

(TBAT) were purchased from Aldrich; hexobarbital (HB), oxazepam (OZ), nitrazepam (NZ), 

Cytochrome c, and Lysozyme from Sigma; 4-decyianiIine from Alfa Aesar; and acetonitriie 

(HPLC grade), acetone, methanol (HPLC grade), sodium hydroxide, sodium hydrogen 

phosphate, sodium dihydrogen phosphate, sodium nitrite, hydrochloric acid, 4 À molecular 

sieves, and magnesium sulfate from Fisher. All column modification procedures used 

acetonitriie that was dried over anhydrous magnesium sulfate, and distilled and stored over 4 

A molecular sieves. Tetrabutylammonium tetrafluoroborate was dried at 110 °C in an oven 

prior to solution preparation. All other chemicals were used as received. 4-

hexvibenzenediazonium tetrafluoroborate (HBDT), 4-decytbenzenediazonium 

tetrafluoroborate (DBDT), 4-carboxybenzenediazonium tetrafluoroborate (CBDT) and 4-

octadecyloxybenzenediazonium tetrafluoroborate (ODBT) were prepared according to 

modified literature procedures I All aqueous solutions were made using deionized water 

from a Millipore Milli-Q purification system. 

Instrumentation 

A Waters model 600E pump controller, model 610 pump, and valve station were used 

as the chromatographic system and a Waters 996 photodiode array detector as the detector. 

The detection wavelengths (Xto) were either 254 ran or 220 am. Solutions were introduced 
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onto the chromatographic column via a 5-|iL injection loop (Rheodyrte model 7413). All 

electrochemical experiments employed a Princeton Applied Research model 173 

potennostat/galvanostat. Chromatographic columns were packed using a Shandon slurry 

column packing system. The dead volume of the columns were -0.2 mL. The design and 

fabrication of columns used in EMLC have also been extensively detailed-^. 

Electrochemical investigation of diazonium salts 

The electroreduction of NBDT. HBDT. DBDT. CBDT and OBDT was studied at a 

glassy carbon electrode (GC-20, Tokai) prior to on-column modification. AU GC electrodes 

were polished sequentially with 1.0-jim. 0.3-|im and 0.05-gm alumina powder (Buehler) 15. 

After polishing the electrodes were sonicated for 10 min in deiomzed water followed by 10 

min in acetonitriie and dried under a directed stream of high purity nitrogen. Acetonitriie 

solutions of the arenediazonium salt ( 10 mM) containing 0.1 M TBAT were used as the 

modifier and electrolyte, respectively, in a standard three-electrode electrochemical cell. 

Solutions were purged with high purity nitrogen for 3 mm before the potential was scanned 

and an inert atmosphere of nitrogen blanketed the solution in the electrochemical cell at all 

times. Applied potentials were referenced against a silver/silver chloride electrode (said. 

NaCl) with a platinum coil as the auxiliary electrode. 

Chemical modification of PGC stationary phases 

An EMLC column freshly packed with PGC particles was rinsed with anhydrous 

acetonitriie for t h. This step was followed by elution of 0.1 M TBAT in anhydrous 

acetonitriie at 0.40 mTVmin for i h at the modification potential for the corresponding 

diazonium salt reported in Table 1. The external electrolyte reservoir was filled with 0.1 M 

TBAT in acetonitriie. A solution of 50 mM diazonium salt and 0.1 M TBAT in acetonitriie 
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was then passed through the column (0.40 mL/'min) at the modification potential for 5 h. 

After the 5 h modification period, the column is rinsed for 1 h with a flowing solution of neat 

acetonitriie. 

Chromatographic separations 

Once modified, the PGC stationary phase was repacked into a stainless steel HPLC 

column of the same dimensions as a commercially available Hypersil Hypercarb™ column 

for comparison purposes. The OB-modified PGC was further compared to an octadecylsilica 

(ODS) column (Waters). Mobile phase A was comprised of 100% methanol at a flow rate of 

t .00 mL min was used as the eluent for all modified stationary phases and the test analyte 

mixture was 100 ppm each HB. OZ. and NZ in methanol The detection wavelength was 220 

ran. 

Evaluation of stability in aggressive mobile phases 

The stability of the DB modified PGC stationary phase was tested at extreme values 

in pH. Two mobile phase compositions were used: Mobile phase B: 50:50 acetonitriierHiO 

(0.1% TFA. pH = 1.5), and Mobile phase C: 50:50 acetonitriie jl%0 (20 mM Na^HPOo, pH = 

11.0). The DB-modified PGC was sequentially exposed to mobile phases B and C each over 

an extended period of -3000 min. A 300 ppm solution of toluene in methanol was injected 

periodically over the exposure time to assess the effect of pH on k' (defined as t-to/to, where t 

= retention time and to = retention time of injection peak) and retention time. The detection 

wavelength was 254 nra 
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Results and Discussion 

Modification of PGC stationary phases 

The covalent modification of PGC stationary phases has been realized by using 

EMLC to fimctionalize the carbon surface. To establish the conditions for the on-column 

modification protocol, the voltammetry of each modifier was studied at a glassy carbon 

electrode in plate form. Figure 1 shows a representative cyclic voltammogram for a 10 mM 

acetonitriie solution of 4-CBDT containing 0.1 M TBAT. hi the first scan, an irreversible 

reduction wave is observed near -580 mV (vs. Ag/AgCV sai'd. NaCI) that dramatically 

decreases to near background levels with successive scans. The cathodic wave is attributed 

to the electroreduction of the arenediazonium salt to form the aryl radical, and the marked 

decrease in current in each of the subsequent scans is diagnostic of the strong passivation of 

the electrode by the formation of the organic monolayer coating! 

The same type of response was observed with the other four modifiers noting that the 

potentials for the peak current in the first scan differed depending upon the substituent 

appended to the aromatic ring. The voltammetry of each diazonium salt was used to select 

the applied potential (Table I ) for the on-column modification protocol. On average, these 

potentials were chosen to be —100 mV positive of the reduction potential of the diazonium 

salt in order optimize the concentration of electrogenerated radical species (i.e.. minimize 

imdesired reactions of the radicals with solvent)I5,l9 

Once the appropriate modification potential is selected, an acetonitriie solution 

containing the modifier and supporting electrolyte is passed continuously through an EMLC 

column (that is packed with 7 um PGC particles) at the modification potential. This process 

results in the on-column electroreduction of the diazonium salt and subsequent generation of 
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the corresponding arene radical as illustrated in Scheme 1. This radical reacts with the 

aromatic network of the PGC spheres at defect sites  ̂thus forming a covalent bond between 

the surface and the modifier. Further reaction of the arene radicals with the modified surface 

creates an arvl film^. 

Comparison of modified stationary phases to Hypercarb™ 

After modification, the NB-, HB-, DB-. CB-. and OB-modified PGC stationary 

phases were slurry packed into a stainless steel HPLC column, and then used to separate a set 

of mixtures directly compared to the same separations on a commercially available 

Hypercarb™ column. 

The chromatographic behavior of the modified PGC was evaluated using an analyte 

test solution containing the polar pharmaceutical agents hexobarbitaL oxazepam and 

nitrazepam (see Scheme 2 for structures). As a starting point, the separation of the analyte 

mixture on an unmodified PGC stationary phase is considered. Figure 1(a) presents the 

chromatogram for this analyte mixture on a Hypercarb™ column. Peaks for this three-

component mixture are well resolved, with the least polar analyte, HB eiuting first (—2.8 

min), and most polar analyte, NZ, last (-8.5 min). 

In comparison to Hypercarb™. a dramatic change in the separation of the mixture is 

observed for all five of the modified stationary phases. Specifically, one notes that although 

the elution order remains the same, they elute faster from the modified stationary phases. 

This decrease in retention time is attributed to the perturbation of the interaction of the 

analytes with the PGC surface by the modifying film. 

Amongst the modified stationary phases, subtle differences in retention times are 

noted and can be rationalized by considering difference in the functional groups on the 
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modifying agents. Figure l(b-d) illustrates the impact of the length of the alkyl chain of the 

modifiers on the separation. As the length of the alkyl chain increases from hexyl to decyl to 

octadecyL, the retention time for all three of the components of the mixture decreases. In 

other words, a shorter chain length allows the analyte to approach the PGC surface more 

closely, thus increasing its interaction with the underlying PGC surface. The longer alkyl 

chain limits the accessibility of the PGC surface to the analytes. thus decreasing their 

retention time. 

The effect of incorporating functional groups other than alkyl chains, is illustrated by 

the NB- and CB-modified stationary phases (Figures I (e-f)). Interestingly, the retention 

times of HB and OZ on the NB-modified stationary phase are similar to those on the OB-

modified PGC, but the more polar NZ is more strongly retained. This difference illustrates 

the effect of incorporating a polar moiety (i.e. NO% in the case of NB-modified PGC) in the 

modifier. Conversely, the retention times of all of the analytes on the CB-modified 

stationary phases is increased, attributed to H-bonding between the carboxy- group of the 

arvl film and the carbonyl groups of the analytes. 

Comparison of OB-modified PGC to ODS 

Although the formation of aryl films on the PGC stationary phase does effectively 

alter its retention characteristics, we were interested in determining whether this phase would 

retain its ability to separate polar compounds. Theoretically, if the it-character of the PGC is 

effectively diminished by the presence of the arene film, then the separation of a polar 

analyte mixture on the OB-modified stationary phase should roughly resemble that found for 

an ODS column. To this end, the chromatography of the HB, OZ and NZ mixture was 

compared on both OB-modified PGC and ODS stationary phases. The results are presented 
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in Figure 3. In both cases, the elution order of the mixture is the same. However, the 

resolution of the mixture is notably better on the OB-modified PGC, even though the 

retention times are much shorter. If polar interactions with the PGC were not possible, then a 

poorer resolution of the HB from the OZ would be expected on this stationary phase, i.e.. it 

would mimic the chromatography on the ODS column. These phases therefore have a 

retention character that is a mixture of PGC and reversed phase silica phases. 

Adsorption of proteinaceous material and PAHs 

One of the limitations of using PGC stationary phases is the irreversible adsorption of 

both proteinaceous and extensively conjugated (e.g.. polynuclear aromatic hydrocarbons 

(PAHs)) analytes onto to the stationary phase, hi many cases, even high concentrations of an 

organic modifier (—80%) are incapable of eluting these compounds. Modified PGC 

stationary phases should possess weaker %-% bonding interactions due to the interruption of 

the PGC surface aromaticitv. and therefore should eliminate the strong adsorption of proteins 

and PAHs to the surface. Of the new phases, the OB-PGC phase is a good candidate since 

ODS stationary phases are routinely used to separate protein and PAH mixtures-8. Figure 4 

presents the results for independent injections of two high molecular weight proteins, 

cytochrome c (a), and Ivsozyme (b), on an OB-modified PGC stationary phase. Remarkably, 

the retention time for both proteins is less than one minute on the OB-modified PGC. 

However, under the same mobile phase conditions with an unmodified PGC stationary phase, 

cytochrome c and Ivsozyme do not elute. 
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Stability of modified PGC stationary phases in aggressive mobile phases 

As noted, PGC has exceptional stability as a stationary phase, even when used with 

aggressive mobile phases. Conventional bonded phases are, however, susceptible to the 

hydro lytic degradation of the siloxane linkages connecting the modifier to the silica support. 

This limitation is particularly problematic in the separation of many types of biological 

materials, where the use of strongly acidic and strongly alkaline mobile phases is often 

required for effective sample resolution-^. It is therefore of great importance to test the 

stability of our aryl modified phases under conditions that degrade conventional phases. As a 

representative case for our alkyl based arene phases, the OB-modified PGC was subjected 

sequentially to two mobile phases. Mobile phase B (50:50 acetonitriierH^O (0.1% TFA (pH 

1.5)) was eluted for -3000 min followed immediately by mobile phase C (50:50 

acetonitriie JIzO (20 mM NajHPQt (pH 11.0)) for a second -3000 mm time period. During 

exposure to each mobile phase, periodic injections of a 300 ppm solution of toluene were 

injected and the retention time (R,) and capacity factor (ft*) were used to evaluate column 

performance. 

Figure 5 presents the plot of k' for toluene versus exposure time in both acidic and 

alkaline mobile phases. Little variability in k' is observed, indicating that the DB-modified 

stationary phase is extremely resilient to hydrolysis at extremes in pH. The pH stability of 

the NB-. and CB-modified PGC stationary phases has already been discussed^. 
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Conclusion 

Preliminary results regarding the on-column modification of PGC stationary phases 

via the electrochemical reduction of an arenediazonium salt have been recently reported by 

our group 19. This paper serves to extend this investigation by creating several fiinctionalized 

PGC stationary phases. To this end, modified stationary phases not only exhibit a dramatic 

decrease in the retention times of a mixture of polar pharmaceutical agents when compared to 

commercially available PGC phases, but also show better resolution and stability to 

aggressive mobile phases than conventional silica stationary phases. Additionally, the OB-

modified PGC was demonstrated to be resilient to the adsorption of proteins such as 

cyctochrome c and Ivsozyme. This coupled with great stability to extremes in pH indicates 

that biological separations are feasible with our modified PGC stationary phases. 

Efforts towards the application of the NB-. CB-, HB-, DB-, and OB-modified PGC in 

more difficult separations are underway. 
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Figure Captions 

Scheme 1. Aryl film formation on PGC spheres by the on-column electroreduction of 

substituted arenediazonium salts. The arene radicals react with defect sites on 

the PGC surface first, followed by subsequent film growth across the modified 

surface. 

Scheme 2. Test analytes used to evaluate column performance. 

Figure 1. Voltammetry at a polished glassy carbon electrode for a 10 mM acetonitriie 

solution of 4-CBDT with 0.1 M TBAT as the supporting electrolyte. Scan 

rate = 200 mV/s. 

Figure 2. Separations of analyte test mixture (100 ppm each hexobarbital (HB), 

oxazepam (OZ), and nitrazepam (NZ)) on (a) Hypercarb™, (b) HB-modified. 

(c) OB-modified, (d) OB-modified, (e) NB-modified, and (f) CB-modified 

PGC. Mobile phase A was used at a flow rate of 1.00 mL/min. 

Figure 3. Separations of analyte test mixture (100 ppm each hexobarbital (HB), 

oxazepam (OZ), and nitrazepam (NZ)) on (a) OB-modified PGC and (b) ODS 

stationary phases. Mobile phase A was used at a flow rate of 1.00 mL/min. 
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Figure 4. Independent injections of (a) cytochrome c and (b) Iysozyme on an OB-

modified PGC column. Mobile phase A was used at a flow rate of 1.00 

mTVmm 

Figure 5. Long term stability of DB-modified PGC during sequential exposure to 

Mobile phase B (—3000 min) and Mobile phase C (— 3000 min) at a flow rate 

of 0.50 mL/min. Àdct= 254 nm. An injection of300 ppm toluene in methanol 

was made at each exposure time and kT ((-#-) Mobile phase B; (-•-) Mobile 

phase C) determined from the corresponding chromatograms. 
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Table 1. Arenediazoninm salt modifier and their corresponding modification potentials 

Modifier 
(in mV vs. Ag/AgCl/sat'd NaCl) 

NBDT -255 
HBDT -800 
DBDT -800 
CBDT -500 
OBDT -500 
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Abstract 

A strategy tor the modification of carbon stationary phases used in electrochemicaily 

modulated liquid chromatography (EMLC) has been developed that uses the electrochemical 

oxidation of aryiacetate anions (the Kolbe reaction) to alter the surface composition. To this 

end. glassy carbon (GC) spheres have been modified on—column by the one-electron 

oxidation of phenyiacetic acid (PAA) and 4-nitrophenylacetic acid (NPA) as modifying 

species to create benzyl- (BN) and mtrophenyl- (NP) modified stationary phases. The BN-

modified columns are subsequently used to separate a mixture of resorcinol (RS) and 3-

nitrophenol (NP) at applied potential. To confirm the success of the modification protocol, 

the NP-modified GC spheres were analyzed by X-ray photoelectron spectroscopy (XPS). 

The voltammetry of PAA and NPA at a planar GC electrode is also presented. 

Introduction 

The modification of carbonaceous stationary phases used in electrochemicaily 

modulated liquid chromatography ̂  I (EMLC) has been recently realized by an on-column 

modification protocol that employs the electroreduction of arenediazomum salts.*2-l4 This 
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method resulted in the development of a facile approach to alter the surface composition of 

carbon stationary phases. 

Recently, Savéant and coworkers applied the anodic oxidation of arylacetic acids to 

functionalize glassy carbon electrodes-15 As outlined in Scheme 1, an arylacetate anion is 

oxidized to generate a benzyl radical that rapidly inserts into the carbon-carbon framework of 

the aromatic structure. Furthermore, the monolayer formed by the Kolbe reaction may be 

removed by placing the modified electrode in a fresh solution of electrolyte and moving to 

more anodic potentials than those used in the deposition step. One may envision a second 

modification strategy, based on the Kolbe reaction, to alter the surface composition of the 

carbon stationary phases used in EMLC. 

Furthermore, the Kolbe reaction has potential application in the development of a 

reversibly modifiable EMLC column. Ideally, the chemical composition of the stationary 

phase could be altered by a modifying species, the desired chromatographic analysis 

performed, and then the modifier could be removed and replaced with a second modifier that 

has different chromatographic properties. 

An on-column application of the Kolbe reaction has been developed to modify GC 

stationary phase materials with benzyl- and 4-nitrobenzyl- groups. The voltammetric 

characterization of the modifiers at a planar GC electrode was performed prior to on-column 

modification in order to determine the appropriate modification potential. 

After modification, the chromatographic properties of the BN-modified GC were 

probed using a mixture of resorcinol (RS) and 3-mtrophenoI (NP) as analytes. The results of 

the modification of GC stationary phases via the Kolbe reaction are presented herein. 
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Experimental Section 

Reagents 

Uncoated GC spheres (Alfa Aesar, diameter ~6 gm) were used as a stationary phase. 

Lithium perchlorate. 4-nitrophenylacetic acid (NPA), 4-phenylacetic acid (PAA), resorcinol 

(RS), 3-nitrophenol (NP), tetrabutylammonium hydroxide (TBOH) (1.0 M in methanol), and 

tetrabutylammonium tetrafluoroborate (TBAT) were purchased from Aldrich; and 

acetonitrile (HPLC grade) from Fisher. All column modification procedures used acetonitrile 

that was dried over anhydrous magnesium sulfate, and distilled and stored over 4 À 

molecular sieves. Tetrabutylammonium tetrafluoroborate was dried at 110 °C in an oven 

prior to solution preparation. All other chemicals were used as received. All aqueous 

solutions were prepared with Milli-Q deionized water. 

Instrumentation 

A Waters model 600E pump controller, model 610 pump, and valve station were used 

as the chromatographic system and a Waters 996 photodiode array detector as the detector. 

The detection wavelength (Xd#) was 254.0 nm. Solutions were introduced onto the 

chromatographic column via a 5 uL injection loop (Rheodyne model 7413). Applied 

voltages (Eappi) were controlled bv a Princeton Applied Research model 173 

potentiostat/galvanostaL Chromatographic columns were packed using a Shandon slurry 

column packing system. 

XPS data were obtained using a Physical Electronics Industries 5500 surface analysis 

system equipped with a hemispherical analyzer, torroidai monochromator, and multichannel 

detector. Monochromatic aluminum Ka radiation ( 1486.6 eV) at 300 W was used for 
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excitation. Binding energies were referenced to the C(ls) emission band at 284 eV. The 

pressure in the XPS chamber was less than 1 x I0~9 Torr during analysis. 

Electrochemical Investigation of arylacetic acids 

The voltammetry of NPA and PAA was studied at a glassy carbon electrode (GC-20, 

Tokai) prior to on-column modification. All GC electrodes were polished sequentially with 

1.0 pm, 0 J gm and 0.05 |im alumina powder (Buehler)̂ . After polishing the electrodes 

were sonicated for 10 min in deionized water followed by 10 min in acetonitrile and dried 

under a directed stream of high purity nitrogen. Acetonitrile solutions of 4 mM of the 

areneacetic acid containing 0.1 M TBAT (I eq. TBOH to deprotonate the carboxylic acid 

group) were used as the modifier and electrolyte, respectively, in a standard three-electrode 

electrochemical cell. Solutions were purged with high purity nitrogen for 3 min before the 

potential was scanned and an inert atmosphere of nitrogen was maintained above the solution 

in the electrochemical cell at all times. Applied potentials were referenced against a 

silver/silver chloride electrode (said. NaCl) with a platinum coil as the auxiliary electrode. 

Chemical modification of GC stationary phases using EMLC 

An EMLC column freshly packed with GC particles was rinsed with anhydrous 

acetonitrile for I h. This step was followed by elution of 0.1 M TBAT in anhydrous 

acetonitrile at 0.50 mL/min for I hat Egppi = -<-1.0 V. The external electrolyte reservoir was 

filled with 0.1 M TBAT in acetonitrile. A solution of 20 mM areneacetic acid and 0.1 M 

TBAT (1 eq. TBOH) in acetonitrile was then passed through the column (0.50 mL/min) at 

the modification potential for 3 h. After the 3 h modification period, the column is rinsed for 

I h with a flowing solution of neat acetonitrile. 
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Chromatographic separations 

Mobile phase A consisted of 50% aqueous 0.1 M lithium perchiorate and 50% 0.1 M 

lithium perchiorate in acetonitrile at a flow rate = 0.50 mrVmin was used as the eluent for 

both modified stationary phases and the test analyte mixture was 170 ppm NP and 400 ppm 

RS in acetonitrile. The detection wavelength was 254 run. 

Results and Discussion 

Voltammetry of modifying species 

Prior to developing an on-column modification protocol, it is useful to characterize 

the modifying arylacetates by cyclic voltammetry at a glassy carbon electrode. This simple 

electrochemical is the basis for determining appropriate modification potentials used in the 

on-column protocol, and provides a simple platform to assess the success of the 

electromodification. The voltammetry for the oxidation of an acetonitrile solution containing 

4 mM NPA in 0.1 M TBAT as the supporting electrolyte is presented in Figure I (It should 

be noted that 1 equivalent of TBOH is added to ensure that the arylacetate anion is present). 

Scan 1 shows the irreversible anodic oxidation of NPA, which decreases in current with each 

consecutive scan indicative of the deposition of a nitrobenzyl monolayer on the glassy carbon 

substrate. Similarly, the formation of a benzyl monolayer is achieved by the electro-

oxidation of PAA as shown in Figure 2. Once again, an irreversible anodic wave is observed 

in the first scan that gradually decreases in current with subsequent scans. 
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On-column modification of GC spheres 

After studying the electrochemical oxidation of NPA and PAA to ascertain an 

appropriate modification potential, i.e. the potential at which the benzyl radical is present in 

high concentrations, an on-column modification protocol can be developed. Briefly, an 

acetonitrile solution of the background electrolyte is passed through a freshly packed GC 

column at the modification potential (+1.0 V in the case of NPA and PAA) for I h. 

Subsequently, a 20 mM solution of the modifier in the same electrolyte (1 eq. TBOH) is 

eluted through the column over a 3 h period at Eappi = +1.0V and then rinsed well with fresh 

acetonitrile to remove adsorbed modifier. 

Characterization of NB-modified GC by XPS 

After the modification protocol, the NB-modified GC stationary phase was analyzed 

by XPS to determine if the on-column procedure was successful. Figure 3 presents the XPS 

spectra for unmodified (a) and NB-modified (b) GC spheres. As illustrated in Figure 3a, the 

typical XPS spectrum for the unmodified GC spheres displays a band for Cls and OIs 

electrons at 287 and 532 eV, respectively. However, upon modification with NB groups, a 

new band at 406 eV is observed for the Nls electrons originating from the nitro group. An 

additional band at 400 eV is also present, and is attributed to the presence of an amine caused 

by the electrochemical reduction of the nitro group 1 5 

Chromatographic behavior of BN-modified GC spheres 

After the aforementioned protocol using PAA as a modifier, the chromatographic 

behavior of a BN-modified EMLC column at applied potential was studied and compared to 

an unmodified EMLC column. To probe the effects of modification, a simple mixture of 

polar aromatic analytes (170 ppm NP and 400 ppm RS in acetonitrile) was used. 
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The chromatography of NP and RS at applied potentials ranging from +500 mV to 

-500 mV on an unmodified GC column is shown in Figure 4. Regardless of the applied 

potential, NP and RS elute as a concise band in less than 1 minute due to poor interaction of 

the analytes with the stationary phase. However, the chromatographic behavior of the same 

analyte mixture on a BN-modified GC column is remarkably different. Figure 5 presents the 

separation ofNP and RS on an EMLC column that has been subjected to the on-column 

Kolbe reaction using PAA as a modifier. Although little resolution is observed at negative 

applies potentials, one observes near baseline resolution of a mixture of NP and RS at 

positive applied potentials. This points toward the possibility that the benzyl monolayer adds 

a new point of interaction to the GC surface which is attractive at positive potentials and 

repulsive at negative potentials. 

Conclusion 

The on-column modification of carbon of stationary phases used in EMLC has been 

effected in previous research via the electroreduction of arenediazomum salts. Recently, a 

new protocol has been developed that uses the generation of benzyl radicals as the modifying 

species by the oxidation of arylacetate anions. To this end, the surface composition of a GC 

EMLC column has been successfully altered using NPA and PAA to create NB and BN-

modified surfaces. 

Additionally, BN-modified stationary phases show an improvement in the separation 

of a mixture of NP and RS at positive applied potentials in comparison to an unmodified GC 

column illustrating the effects of modification on column performance. 
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In the future, investigations into the reversibility of the Kolbe reaction^ will be 

performed. The ability to remove the deposited monolayer points to the intriguing possibility 

of reversibly modifiable EMLC stationary phases. 
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Figure Captions 

Scheme 1. Modification of a glassy carbon surface via the Kolbe reaction. 

Figure 1. Voltammetry of 4 mM NPA at a polished glassy carbon electrode (Scans I -4). 

Electrolyte: 0.1 M TBAT in acetonitrile (I eq. TBOH). Scan rate = 200 mV/s. 

Figure 2. Voltammetry of 4 mM PAA at a polished glassy carbon electrode (Scans 1-4). 

Electrolyte: 0.1 M TBAT in acetonitrile (1 eq. TBOH). Scan rate = 200 mV/s. 

Figure 3. XPS spectrum of (a) unmodified glassy carbon spheres and (b) NB-modified 

glassy carbon spheres. Inset is the N(ls) region that shows diagnostic 

emission for the nitrogen of an NO% group at 406 eV. 

Figure 4. EMLC separation of resorcinol (RS) and 3-nitrophenol (NP) on an unmodified 

GC stationary phase at Eappi = (a) +500 mV. (b) +250 mV. (c) open circuit, (d) 

-250 mV. and (e) —500 mV. Mobile phase A was used at a flow rate of 0.50 

mL/min. = 254 nm. 

Figure 5. EMLC separation of resorcinol (RS) and 3-nitrophenol (NP) on a BN-

modified GC stationary phase at Egppt = (a) +500 mV, (b) +250 mV, (c) open 

circuit, (d) —250 mV, and (e) —500 mV. Mobile phase A was used at a flow 

rate of 0-50 mL/min. Xd« = 254 nm 
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Introduction 

Metal nanoparticles have a wide range of properties of potential importance to 

electronics, magnetism, catalysis, and analysis 1*t". In many instances, the assembly of such 

particles into nanostructured systems has exploited the simplicity and versatility of 

monolayers prepared from bifunctionai molecules (e.g. dithiols4' and diisocvamdes14-15) 

which act as coupling agents for linking to substrates like gold or platinum. This 

communication extends the range of usable substrates to carbon-based materials by 

describing the ability to bind gold nanoparticles to glassy carbon electrodes (GCEs) through 

a sulfhydryl-tenninated monolayer that is formed by the electrodeposition of 4-

mercaptobenzenediazonium tetrafluoroborate (4-MBDT). 

Experimental Section 

Scheme 1 summarizes each step in the overall preparative process 16. The first step 

depicts the electrochemical formation of the 4-mercaptobenzene (MB) monolayerl9. The 

second step illustrates linkage of the nanoparticles to the GCE via the sulfhydryl moiety of 

the monolayer. The MB monolayer is formed on freshly polished GCEs by cycling the 
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applied potential between +600 and -600 mV in a 10 mM solution of 4-MBDT until the 

electrode was passivated and the observed current decayed to background levels (3-4 cycles). 

This process reflects the irreversible one-electron reduction of the diazonium group19"21 (half-

wave potential: -480 mV vs. Ag/AgCl/satd. NaCl). After somcation in neat acetonitrile for 

10 min and drying under a stream of high purity nitrogen, an aqueous solution (20 jiL) of 

uncoated, 30-nm gold particles was pipetted onto the MB-modified GCE and allowed to 

stand for 24 h in an environment saturated with water vapor. Finally, the electrodes were 

again rinsed and dried in the same way as the freshly polished GCEs. 

Results and Discussion 

Two sets of characterizations were used to examine the effectiveness of coupling the 

particles to the MB-coated GCE. The results from the first set of characterizations are shown 

by the atomic force microscopy 22 (AFM) images (2.0 x 2.0 pm) in Fig. I. Fig. 1 presents the 

topographic images of MB-modified GCE before (a) and after (b) exposure to the gold 

particle solution. The AFM image of MB-modified GCE is similar to those reported in 

literature for both uncoated and monolayer-coated GCEs.27-28 It is characterized by features 

less than 30-nm in height and a large number of striatums originating from the polishing 

process. After exposure to the 30-nm gold particles, the image shows the sample has 

developed a ^pebbled" appearance, indicative of the presence of a fairly dense layer of the 

nanoparticles. The particles have the expected height of —30-nm as revealed by cross-

sectional contour plots of the surface topography (not shown), Imaging also showed that the 

particles remained attached to the GCE surface even after extensive sonication, whereas 

particles deposited onto unmodified GCE were easily removed by somcation. Adherence 
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after sonication supports the coupling of the particles to GCE with the sulfhydrvl moiety of 

the MB monolayer. 

The second set of characterizations used X-ray photoelectron spectroscopy (XPS) ™. 

These results are shown in Fig. 2, and include survey spectra for freshly polished and MB-

modified GCEs, and for MB-modified GCEs after exposure to the nanoparticles. As 

illustrated in Fig. 2a, freshly polished GCE shows the expected bands in the C(ls) and O(ls) 

regions at 287 and 532 eV. respectively. After the electrolysis of 4-MBDT (Fig. 2b), bands 

for the S(2s) singlet (located at 228 eV), and S(2p) couplet (centered at 164 eV). The two 

sulfur bands are diagnostic of an unreacted sulfhydrvl species and the presence of these 

features is consistent with the expected composition of the MB-monolayer. 

In addition to the characteristic bands for the MB film, the XPS spectrum for the 

particle-modified sample (Fig. 2c) contains Au(4f) bands at 88 and 85 eV, which further 

support the successful deposition of the gold nanoparticles. The spectrum also shows that the 

centroid of the S(2p) band is shifted ~I eV lower in binding energy after particle deposition 

to 163 eV. We attribute this shift to the immobilization of the gold particles through the 

formation of gold thiolate linkages29. 

We also tested the ability to modify the nanostructured assembly as a possible avenue 

for manipulating the surface properties of the immobilized particles as well as for generating 

three-dimensional motifs. After attachment of gold particles to GCE, some samples were 

immersed in a dilute ( 1 mM) ethanolic solution of 4-bromothiophenol (BTP) for 24 h. 

Analysis of these samples by XPS (Fig. 2(d)) shows the presence of the BTP adsorbaie based 

on the bands centered at 70 eV for the emission of Br(3d) electrons (Fig 3). tn other 

preliminary experiments, we have successfully modified the immobilized nanoparticles with 
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a ferrocene terminated thiol (Le. HS-(CHz)t lOzCFc), demonstrating the potential flexibility 

of our synthetic strategy. 

Conclusion 

In conclusion, we have developed an approach to robustly anchor gold nanoparticles 

to carbon surfaces via an electrodeposited mercaptobenzene monolayer, extending the range 

of the platforms that can be used to prepare nanostructure assemblies. Studies are underway 

to examine the scope of this approach. We are, for example, beginning to explore the utility 

of this process to create three-dimensional motifs by the subsequent modification of the gold 

colloid layer, the coupling properties of which may be manipulated by the nature of the 

functional groups on an adsorbing thiol (e.g. labile protecting groups)j0. We are also 

pursuing the construction of patterned arrays of nanoparticles via "thiolate" 

photolithography31. 
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Figure Captions 

Scheme 1. Construction of Au-modified glassy carbon electrode with 4-MB linking layer 

Figure 1. (a) AFM Tapping Mode image in air of MB-modified glassy carbon. 

(b) AFM liquid contact mode image of MB-modified electrode after 

deposition of gold nanoparticles. 

Figure 2. XPS spectra for (a) unmodified glassy carbon, (b) MB-modified glassy 

carbon, (c) Au-MB-modifled glassy carbon, and (d) BTP-Au-MB-modified 

glassy carbon. The insets are the expanded region from 60-250 eV for MB-. 

Au-MB-. and BTP-Au-MB-modified glassy carbon. 
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Abstract 

Electrochemically modulated liquid chromatography (EMLC) has been previously 

demonstrated as a viable chiral separation methodology that uses applied potential to 

reversibly adsorb a mobile phase chiral selector ((5-cyclodextrin) to the porous graphitic 

carbon (PGC) stationary phase. Recently, the EMLC concept has been extended to the 

development of ferrocene-based mobile phase chiral selectors that adsorb to the carbon 

surface with increasing negative applied potentials. Herein we report the synthesis and use 

of (aM^MmethylbenzylaminocarbonyOferrocene (MBACF) as a potential candidate for 

chiral selection in EMLC applications. MBACF was characterized by NMR, MS, and its 

chirality was assessed by HPLC on a P-Cyclodextrin column. Additionally, the 

electrochemical stability of MBCAF was evaluated by cyclic voltammetry and at various 

applied potentials on an EMLC column. Preliminary results from the separation of the 

enantiomers of (+-/-) Homatropine using MBACF at applied potential are also discussed. 
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Introduction 

One of the most important applications for liquid chromatography is the separation of 

pharmaceutical^ important enantiomeric compounds i "4. M many cases, only one 

enandomer may have therapeutic benefits, whereas the second enantiomer may occasionally 

have harmful side effects^/*. 

Two approaches are commonly used to effect chiral resolution: addition of a chiral 

additive to the mobile phase, or the use of a chiral stationary phase. Several types of chiral 

stationary phases are available depending on the composition of the target analyte, which 

naturally implies a large cost associated with use of multiple columns and associated 

methods development for different racemic mixtures. Ideally, electrochemically modulated 

liquid chromatography (EMLC) has been developed as a chromatographic method that is 

capable of separating a wide variety of analytes on a porous graphitic carbon (PGC) column 

by using applied potential to manipulate analyte retention 7-16 fo this end, furthering 

applicability of EMLC to chiral separations is highly desirable. 

Chiral resolution of barbiturates using EMLC has already been achieved by our 

research group through the use of P-cyclodextrin ((5-CD) as a chiral additive to the mobile 

phase 10. The observed separations of hexobarbital and mephenytoin were achieved via 

reversible electrosorption of the (3-CD selector to the PGC stationary phase. 

A viable extension of chiral separation and the EMLC concept is found in designing 

chiral selectors with functional groups that will reversibly adsorb to the stationary phase at 

applied potentials as depicted in Scheme I. This inherently implies that the "adsorbing 

moiety" must be electroactive. Ideally, manipulation of the electron donating/accepting 
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properties of the redox active group (RA) with applied potential would increase or decrease 

the adsorption of the selector to the PGC phase. 

Several factors were considered in the design of an electro active chiral selector for 

EMLC. First, the compound must be eiectrochemically stable in the potential range used in 

EMLC applications (+500 mV to -1000 mV, vs. Ag/AgCL, said. NaCl). Although many 

eiectrochemically active groups have been reported in the literature, ferrocene was selected 

as a promising candidate since its voltammetry and stability are well-documented I 7-20. 

Secondly, the creation of the chiral architectures should be facile, and many chiral ferrocenes 

are synthetically feasible in a few steps-^. Once prepared, the chiral functionality should not 

racemize. It is well known that ferrocenes with a chiral group a to the cyclopentadienyl 

(Cp) ligand will racemize in solution at room temperaturê  I, therefore the selector must have 

the chiral moiety at least one carbon away from the Cp ligand, or have a group that sterically 

hinders rotation about the attachment point. Finally, as mentioned earlier, there should be an 

enhancement in the separation that scales with applied potential due to an increase in the 

adsorption of the chiral selector to the stationary phase. 

Based on the above criteria. ( aH^K methyIbenzylaminocarbonyl)ferrocene 

(MBACF) (scheme 2) was chosen as a chiral selector for the preliminary evaluation of the 

effect of applied potential on a separation. Herein we report the synthesis and 

characterization of MBACF. and its application as a mobile phase chiral selector in the 

separation of (-/-) homatropine, a pharmaceutical^ important anticholinergic. 
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Experimental Section 

Reagents and Materials 

Porous graphitic carbon ((PGC), diameter ~7 um) was purchased from Hvpersil; 

lithium perchlorate (LiClQt), ferrocenecarboxylic acid, pyridine, tetrabutylammonium 

hexafluorophosphale and a-methylbenzylamine from Aldrich; (+/-) homatropine from 

Sigma; cyanuric fluoride was from Strem; deuterated chloroform from Cambridge Isotopes 

and acetonitrile (HPLC grade), methylene chloride, tetrahydrofuran, magnesium sulfate and 

methanol (HPLC grade) from Fisher. 

Synthesis of Ferrocene-based Chiral Selector 

The mobile phase chiral selector used throughout these experiments, (aM+)-

(methylbenzylaminocarbonyl)ferrocene (MBACF), was prepared according to a modified 

procedure-^-. 

A. Preparation of Flnrocarbonylferrocene (1) 

A 100 mL round bottom flask, equipped with a magnetic stir-bar, was charged with a 

suspension of 1.70 g (7.4 mmol) ferrocenecarboxylic acid, 1.20 mL (14.8 mmol) of pyridine, 

and 37 mL of freshly distilled methylene chloride. The mixture was stirred at 0 °C in an ice 

bath and 2.0 g (14.8 mmol) of cyanuric fluoride was added dropwise. After stirring at this 

temperature for 90 min, —25 g of crushed ice were added and a white gelatinous solid 

formed. The solution was then passed through fluted filter paper and the filtrate was washed 

sequentially 3 x 25 mL with methylene chloride. The methylene chloride extract was 

washed with cold water 2 x 25 mf , and the organic layer was then dried over anhydrous 

magnesium sulfate, filtered, and evaporated under reduced pressure to give (1) as a red-

brown oil. The crude oil was purified by column chromatography on silica gel with 6:1 
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hexane:ethyl acetate as the eluenL The pure product is a red-orange solid. lH-NMR 

(CDCI3): 4.64 ô (m, 2H); 4.41 S (m. 2H); 4.11 5 (s, 5H). EIMS: m/z = 232 (NT)-

B. Preparation of (aM+HmethyibenzyiaminocarbonyOferrocene (MBACF) 

A 100 mL round bottom flask, equipped with a magnetic stir-bar. was charged with 

0.5 g (2.15 mmol) of (1), 21 mL of freshly distilled tetrahydrofuran. and 0.27 mL (2.15 

mmol) of ( a )-( - )-methy Fbenzy iamine under a blanket of nitrogen. The reaction was stirred 

for 1 h at room temperature. After this period, the solvent was removed on a rotary 

evaporator and 20 mL of methylene chloride were added. The organic layer was extracted 2 

x 10 mL with water, dried over anhydrous magnesium sulfate, filtered, and evaporated under 

reduced pressure to give MBACF as orange-red crystals. 'H-NMR (CDCI3): 737 ô (m. 5H); 

5.90 5 (d. 1H); 4.73 Ô (m. 3H); 433 ô (m. 2H); 4.14 5 (s. 5H); 1-59 Ô (d, 3H). EIMS: m/z 

= 333 (Ml; m/z = 121 (HN-C(H)PhCH3). 

Instrumentation 

A Waters model 600E pump controller, model 610 pump, and valve station were used 

as the chromatographic system and a Waters 996 photodiode array detector as the detector. 

The detection wavelength (Xda) was 254.0 nm. Solutions were introduced onto the 

chromatographic column via a 5 uL injection loop (Rheodyne model 7413). Applied 

voltages (Eappi) were controlled by a Princeton Applied Research model 173 

potentiostat/galvanostat and all potentials were referenced to a Ag/AgCL said. NaCl 

reference electrode. Chromatographic columns were packed using a Shandon slurry column 

packing system. The dead volume of the columns were -0_2 mr. The design and fabrication 

of columns used in EMLC have also been extensively detailed^. 
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Cyclic voltammograms of 0-3 mM MBACF (in 60:40 acetonitrile: 0.1 M aqueous 

LiCIO») were recorded on a Houston Instruments 2000 X/Y using a polished glassy carbon 

plate (GC-20, Tokai) as the working electrode, a platinum mesh counter electrode, and a 

Ag/AgCl, said. NaCl reference electrode (Scan rate = 50 mV/s). 

XPS data were obtained using a Physical Electronics Industries 5500 surface analysis 

system equipped with a hemispherical analyzer, torroidal monochromator, and multichannel 

detector. Monochromatic aluminum Ka radiation (1486.6 eV) at 300 W was used for 

excitation. Binding energies were referenced to the C(ls) emission band at 284 eV. The 

pressure in the XPS chamber was less that 1 x 10~* Torr during analysis. 

' H-NMR spectra were obtained on a Van an VXR 300 MHz spectrometer using the 

residual solvent peak as an internal reference (8 7.26 (CDCI3)). Electron ionization mass 

spectra (EIMS. 70 eV) were run on a Finnigan 4000 spectrometer. 

Chromatographic separations 

A Cylcobond 2000. P-cylcodextrm (P-CD) column ( Alltech) was used to evaluate the 

purity of chiral reagents. Three mobile phases were used: Mobile phase A consistai of 65:35 

methano 1 : water for separations using the P-CD column, Mobile phase B consisted of 60:40 

acetonitrile:0.1 M aqueous LiClQi and Mobile phase C consisted of60:40 acetonitrile (0.3 

mM MBACF):0.1 M aqueous LiCIO*. The EMLC chromatographic columns were 

equilibrated at each applied potential for 1 h prior to analyte injection. Separation factors 

were calculated using the formula a = tz/ti, where t, = retention time of early eluting 

enantiomer and t? = retention time of later eluting enantiomer. 
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Results and Discussion 

Affirmation of the Chiralitv of MBACF 

As with the preparation of any chiral substance, it is important to verify that the 

integrity of its handedness has been maintained throughout the synthetic protocol. Many 

racemic mixtures of ferrocenes have been successfully separated by inclusion with 

cyclodextrins. either in the mobile phased or on a bonded phased To assess the chiralitv 

of MBACF, we used a commercially available P-CD column, and compared the separation to 

that reported for a structurally similar racemic ferrocene (+•/- N-benzyl-N-( 1 -

ferrocenylethyl)amine)24 under the same separation conditions. Figure I presents a typical 

chromatographic result for a 100 ppm solution of MBACF in acetonitrile. A single band 

indicates that the chiralitv of MBACF is in tact and that no other detectable or separable 

synthetic ferrocenvl precursors (such as unreacted fluorocarbonvlferrocene) are present. 

Electrochemical Stability of MBACF 

While prone to rapid electrochemical decomposition in aqueous solvents 19. most 

ferrocenes are stable towards electrolysis in non-aqueous solvents. An evaluation of 

MBACF by cyclic voltammetry was performed to assure that there is only one iron center 

present and to assess its stability to electrolysis. Figure 2 displays the voltammetry for a 03 

mM solution of MBACF using mobile phase B as the electrolyte and a freshly polished 

glassy carbon electrode. The scan rate was 50 mV/s. A single set of quasi-reversible waves 

is observed with a peak current separation of -90 mV and an estimated formal reduction 

potential of - 630 mV. The long term stability of the compound was tested by continuously 

scanning the applied potential between the same anodic and cathodic limits for 15 mm 
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There was no detectable degradation of MBACF evident in the voltammetric response, 

indicating that MBACF is stable in the potential ranges typically used for EMLC separations 

at PGC, and for a period of time surpassing its residence time as a chiral selector added to the 

mobile phase. 

In order to further evaluate MBACF. its chromatographic behavior as a function of 

applied potential was studied using an EMLC column. A set of chromatograms at various 

applied potentials for a 100 ppm solution of MBACF in mobile phase B is presented in 

Figure 3. A consistent retention time (-1.5 min) is observed for negative Eappi and at open 

circuit. However, application of increasing positive potentials results in the increased 

retention of MBACF on the EMLC column, which is attributed to the attractive interaction 

between the ^-electrons of the aromatic Cp rings with the positively charged PGC surface. 

No decomposition of the chiral selector on-column is observed. 

Use of MBACF as a Chiral Selector in the Mobile Phase 

After the careful synthesis of MBACF. and ensuring that a single enantiomer and 

redox center was present, the chiral selector was added to the mobile phase. As a test 

racemic mixture, (-<-/-) homatropine (Scheme 3) was selected since it is of biological 

importance as an anticholinergic. 

The chromatography of (—/-) homatropine on a PGC column is shown as a function of 

Eappi before (Figure 4) and after (Figure 5) the addition of MBACF to the mobile phase, hi 

the absence of MBACF as a chiral selector, both enantiomers elute as a single band in less 

than two minutes at all Eappi- Although the acidity of the mobile phase was not monitored, it 

is likely that homatropine is protonated-^ (pK* — 9.41), thus resulting in the observed 

decrease in retention time as the applied potential becomes more positive. 
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Addition of MBACF to the mobile phase results in the resolution of (+) and (-) 

homatropine at all applied potentials as demonstrated in Figure 5. Mall cases, the (-*-) 

enantiomer elutes first, as confirmed by independent injection of (+)-homatropine. As the 

applied potential moves from positive to negative values, the resolution of the enantiomeric 

mixture improves. Furthermore, the separation factor, a. scales linearly with applied 

potential as shown in Figure 6. It is expected that application of more negative potentials 

will enhance the resolution even further, however one is limited by the reduction of solvent at 

potentials greater than -1000 mV. From the chromatography in Figure 5, one also notes that 

mass balance is not conserved from the separations at positive and negative potentials. This 

is most likely attributed to some electrochemical decomposition of the analyte at negative 

potentials. 

Retention of MBACF on PGC 

The many possible interaction mechanisms between the chiral selector (MBACF). 

enantiomerically pure analyte (H), and PGC stationary phase are represented in Scheme 4. 

As shown in this representation, HzMBACF is the interaction complex formed between 

homatropine and MBACF. and (m) and (s) are used to designate the complex in the mobile 

phase or stationary phase, respectively. As more negative potentials are applied to the PGC, 

more MBACF adsorbs to the carbon surface resulting in an increase in the separation factor, 

ou hence H:MBACF(s) is the predominant complex at these potentials. Conversely, at 

positive potentials, less MBACF is adsorbed to the PGC, so H:MBCF(m) is the more likely 

complex. 
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Adsorption of MBACF to the PGC Stationary Phase 

A final assessment of the performance of MBACF as a chiral selector for EMLC is its 

adsorption to the PGC stationary phase. It is well known that ferrocenyl compounds 

irreversibly adsorb to carbon electrodes^, and it has been postulated that the ferrocenium 

ion has a similar spacing between the Cp rings to allow it to intercalate in between the 

graphene layers of highly ordered pyrolytic graphitic (HOPG). Hence, after extended use 

with MBACF, the PGC column packing was submitted for analysis by x-ray photoelectron 

spectroscopy (XPS). Figure 7 shows the XPS spectrum from 740-700 eV for PGC that has 

been used for 6 months with MBACF. Two bands attributable to the Fe(2p) electrons of 

ferrocene are present, at an estimated atomic concentration is 0.8%. Thus, the irreversible 

adsorption of the compound is insignificant in terms of contributing to the retention process. 

Conclusion 

A new dimension to EMLC is the separation of enantiomeric compounds, which 

serves to extend its applicability as a universal chromatographic technique. Although chiral 

selectors have already been successfully added to the mobile phase in EMLC applications, 

the creation a selector with eiectrochemically tunable adsorption is an interesting prospect. 

To this end, we have design a compound, MBACF, with a ferrocenyl group appended to a 

chiral arm. MBACF is readily synthesized in two steps from ferrocenecarboxylic acid, and 

retains its chirality in all applications. Additionally, it is not prone to electrochemical 

degradation under the conditions used in EMLC separations. This coupled with its 

effectiveness in the resolution of the enantiomers of homatropine make MBACF an attractive 

mobile phase chiral selector for EMLC. 
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In the future, other chiral selectors incorporating a ferrocene redox center will be 

prepared. Furthermore, the interaction mechanism of MBACF with several target analytes 

will be explored. 
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Figure Captions 

Scheme I. Pictorial representation of the effect of applied potential on the adsorption of a 

chiral selector containing a redox active group (RA) to the PGC stationary phase. 

Ideally, the adsorption of the selector may be manipulated by eiectrochemically 

changing the electron donating/accepting properties of the RA. 

Scheme 2. Structure of (aH+)-(methylbenzylaminocarbonyI)ferrocene (MBACF). 

Scheme 3. Structure of (+•/-) homatropine. 

Scheme 4. Schematic representation of the possible interaction mechanisms for the 

separation of (+/-) homatropine with MBACF as a chiral selector. 

Figure 1. Chromatography of 100 ppm MBACF in acetonitrile on a P-CD bonded HPLC 

column. Mobile phase A was used as the eluent at a flow rate = 0.50 mL/min and 

Xdct = 254 nm. 

Figure 2. Representative cyclic voltammogram of 0.3 mM MBACF in mobile phase B as 

the supporting electrolyte at a freshly polished glassy carbon electrode. Scan rate 

= 50 mV/s and potential is applied vs. a Ag'AgCI, said. NaCl reference electrode. 
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Figure 3. Chromatography of 100 ppm MBACF in mobile phase B at various applied 

potential on an EMLC column. Mobile phase B was used as the eluent at a flow 

rate = 0.40 mlVmin and Xd# = 254 nm. Eopen en = +260 mV. 

Figure 4. Chromatography of 1000 ppm racemic Homatropine in mobile phase B at various 

applied potential on an EMLC column. Mobile phase B was used as the eluent at 

a flow rate = 0.40 mL/min and Xd« = 254 nm. Eopcn circuit = +260 mV. 

Figure 5. Chromatography of 1000 ppm racemic Homatropine in mobile phase C at various 

applied potential on an EMLC column. Mobile phase C was used as the eluent at 

a flow rate = 0.40 mlVmin and Xd# = 254 nm. Eopen circuit = +260 mV. 

Figure 6. Plot of separation factor, a = ti/ti, vs. applied potential. The line was plotted 

using linear regression. 

Figure 7. X-ray photelectron spectrum from 740-700 eV for a PGC column packing that has 

been used with MBACF for a period of 6 months. 
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Abstract 

Numerous thiol-based compounds have been used to modify gold substrates in recent 

years, yet few examples of functionaiized thiols whose pendant group adsorbs in a parallel 

orientation to the gold surface are known. Herein, we describe the characterization and 

properties of benzenehexathiol (BHT, CoHéSô) monolayer films formed by chemisorption at 

resistively evaporated gold films. Infrared reflection absorption spectroscopy (IRRAS), x-

rav photoelectron spectroscopy (XPS), friction force microscopy (FFM), and cyclic 

voltammetry were used to characterize the monolayer. The absence of characteristic 

adsorption bands in the IRRAS spectra of a BHT monolayer strongly suggests that the 

molecules lie planar to the gold surface. This is substantiated by AFM contact mode images 

of micro-contact printed BHT monolayers. X-ray photoelectron spectroscopy (XPS) 

confirms the presence of BHT on the gold surface and points toward the possibility of more 

than one type of sulfur species. Surface coverage was estimated to be F = 7.34 x 10"* 

mol/cm2 by reductive desorption experiments, and is compared to a predicted coverage of Tot 

= 5.95 x IO~10. Finally, the electron-transfer properties of a BHT-modified gold electrode 

were evaluated using ferrocene and catechol as test probes. 
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Introduction 

The modification of surfaces is a rapidly expanding field in analytical chemistry. Of 

particular interest is the spontaneous adsorption of sulfur-containing molecules onto gold 

substrates forming self-assembled monolayers (SAMs). Sulfur-derived monomolecular films 

are stable and have many uses due to the ability to tailor the chemical properties of the 

adsorbing thiol Examples include fundamentals studies of electron transfer across an 

interfacê  3, modification of electrodes to create more ideal voltammetric responses 

microelectronics, and biomaterials. 

In general, spontaneous adsorption of thiols results in the formation of a densely 

packed monolayer covaiently attached to the metal surface. Infrared reflection spectroscopy 

(1RS) and ellipsometnc thickness measurements indicate that alkanethiol chains adopt a 

surface orientation such that the majority of the carbon-carbon bonds are in an all trans-

configuration with additional van der Waals interactions causing the chains to be tilted -30° 

from the surface normal 17-19 Similarly, arenethiols form monolayers with their aromatic 

groups relatively perpendicular to the surface -0. 

It is uncommon to observe thiol monolayers where the organic endgroup lies parallel 

to the gold surface. Bushby and coworkers provide some evidence for thiol-tethered 

triphenylene compounds that form monolayers in which the triphenylene unit is planar to the 

gold surface^I. Additionally, porphyrins bearing alkanethiol chains have been prepared that 

make the porphyrin moiety capable of planar orientations to the gold surface^. 

Recently, we prepared monolayers of benzenehexathiol (BHT), an aromatic 

compound substituted with six thiol functionalities, which lies parallel to the gold surface as 
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illustrated, in Scheme la. To our knowledge, the adsorption of other aromatic polythiols in 

this fashion, such as 1,4-benzenedithiol. has not been observed^. The results of IRRAS, 

FFM, XPS, and electrochemical characterization of monolayers formed from BHT on gold 

surfaces are reported herein. 

Experimental Section 

Reagents 

Acetonitrile. tetrabutvlammomum hexafluorophosphate (TBAH), methanol and acetic 

acid were purchased from Fisher Scientific; polydimethylsiloxane (PDMS) 182 elastomer kit 

from Dow Coming, and ferrocene, catechol, and potassium hydroxide (KOH) were from 

Aldrich Chemical Company. Catechol was sublimed prior to use. All other compounds were 

used as received. Benzenehexathiol was synthesized and characterized according to 

published literature procedures-"*-̂  All aqueous solutions were prepared using Millipore 

deionized water. 

Gold Substrates 

Gold was deposited on two substrates: glass and mica. All substrates were prepared by 

deposition of300 ran of gold (02 pm s"1) in a crvopumped E306A Edwards Coating System. 

The pressure during evaporation was typically below 7 x 10"* Torn 

Glass substrates were pretreated with a 15 nm (0.1 pm s"1) adhesive layer of chromium 

prior to gold deposition. The glass slides were cleaned in an aqueous solution of Micron 

surfactant overnight and rinsed well with Millipore deionized water. Finally, the slides ware 
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washed with methanol and dried under a directed stream of high purity nitrogen before 

loading into the evaporator. 

The mica substrates were cleaved immediately before loading into the evaporator. After 

gold deposition, the samples were annealed in the ambient at 300 °C for 4-6 h to ensure that 

large Au(111) terraces are formed-G«Z7. 

Glassy Carbon Substrates 

Glassy carbon electrodes (Tokai. GC-20) were polished sequentially with 1.0 fim, 0.3 

um, and 0.05 pm alumina (Beuhler) followed by sonication in water and acetonitrile for 10 

min. 

Monolayer Preparation 

Monolayers were formed on the two types of gold (Au/Cr/glass or Au/mica) by 

immersion into I mM BHT solutions of acetonitrile according to conventional protocols L 

Immersion times were typically 5 mm. On emersion, the samples were rinsed with 

acetonitrile, and dried in a stream of high purity nitrogen. It is noted that monolayers of BHT 

on gold are hydrophobic (as is the case with GC) and are not wetted extensively by water. 

Patterned monolayer surfaces were prepared using micro-contact printing (|*-CP) with 

PDMS stamps as previously described-Briefly, a PDMS |x-CP stamp was immersed in a 

3 mM solution of BHT in acetonitrile for 15 min. Upon emersion, the stamp was dried in a 

stream of high purity nitrogen for 10 s and placed directly onto the gold substrate. The stamp 

was allowed to sit for 30 s and was carefully removed. The g-CP process results in domains 

of BHT and bare All 
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Infrared Spectroscopy 

Infrared spectra were acquired with a Nicolet 750 FT-IR interferometer. Monolayer 

spectra were obtained using p-polarized light incident at 80° with respect to the surface 

normal and are reported as -log(R/R<>), where R is the reflectance of the sample and R* is the 

reflectance of a C, g-perdeuterated thiol monolayer/Au reference sample. A liquid cooled 

HgCdTe detector was used. The spectrometer and sample chamber were purged with boil-

off from liquid N%. Further details of the experimental procedures are given elsewhere^. 

Electrochemical Measurements 

Electrochemical experiments were performed to characterize the properties of the 

modified electrode in solutions of 0.1 M tetrabutylammomum hexafluorophosphate (TBAH) 

in methanol (1.3 mM ferrocene) or 0.1 M aqueous acetic acid (1.0 mM catechol) using a CV-

27 potentiostat (Bioanalytical Systems), a Houston Instruments 2000 XY recorder, and a 

conventional three-electrode cell. The exposed area of the working electrode, as defined by 

the diameter of a Viton O-ring, was 0.50 cm2. All voltages are reported with respect to a 

Ag/AgCl, saturated NaCl electrode. Electrolyte solutions were deoxygenated with high purity 

argon for approximately ten minutes prior to use. 

Reductive desorption experiments which were used to estimate the surface concentration 

of the adlayer^O were performed in deoxygenated 0.5 M KOH solutions using the same 

conditions described above. 

X-ray Photoelectron Spectroscopy (XPS) 

XPS data were obtained using a Physical Electronics Industries 5500 surface analysis 

system equipped with a hemispherical analyzer, torroidal monochromator, and multichannel 

detector. Monochromatic aluminum Ka radiation (1486.6 eV) at 300 W was used for 
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excitation. Binding energies were referenced to the C(ls) emission band at 284 eV. The 

pressure in the XPS chamber was less than 1 x 10"* Torr during analysis. 

Friction Force Microscopy (FFM) 

FFM images of patterned BHT monolayers on gold /mica were collected on a Digital 

Instruments Multimode with a Nanoscope m controller. Images were captured in Contact 

Mode using 200 |im oxide-sharpened S13N4 cantilevers (Nanoprobes). A more detailed 

procedure is reported elsewhere^. 

Results and Discussion 

Infrared Reflection/Absorption Spectroscopy (IRRAS) of BHT Monolayers 

IRRAS provides a facile means to examine the composition and spatial organization 

of organic monolayers on gold surfaces. Numerous examples can be cited in which IRRAS 

has been employed to detail the characteristics of both the end group and organic spacer of 

alkanethiols on gold substrates 1732 Orientation insights rely on the so-called surface 

selection rule, which indicates that the transition dipole of a vibrational mode is preferentially 

excited when aligned closer to the surface normal^ 

hi the simplest case, BHT would adopt one of the two possible orientations illustrated 

in Scheme I : with the aromtic ring parallel (a), or perpendicular (b) to the gold surface. If 

BHT adsorbs with its ring perpendicular to the electrode, then features for the S-H bands 

from 2600-2550 cm"1 typical of an aromatic thiol̂ should be observed; specifically, the in-

plane and stretching modes of the carbons in the ring should also be present. 
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Figure I presents the split spectral region from 3200-2800 cm"1 and from 1700-1000 

cm'1 for BHT adsorbed on Au/Cr/glass. The spectrum is essentially featureless pointing 

toward the possibility that the benzene ring is oriented parallel to the gold surface. Parallel 

orientation of aromatic ring systems has been previously observed for electrosorbed benzene 

derivatives-^5-37 %he weak bands at 1641 and 1527 cm"1 in Figure I are assigned to the 

ring-breathing modes of an aromatic ring. Exploration of the spectral region diagnostic of C-

S modes (800-600 cm'1) is not possible due to the lower wavelength cut-off of our detector. 

The strongest absorbance at 1275 cm"' is indicative of a thiocarbonyl (C=S) groupé 

and potentially establishes that some of the S-H bonds have been cleaved. This is not an 

entirely unfeasible possibility since one may consider distribution of the negative charge 

throughout the aromatic system via a resonance mechanism that incorporates carbon-sulfur 

double bonds as depicted in Scheme 2. Thioquinonoid compounds (S=Ph=S) are 

synthetically challenging to isolate due to their instabilitŷ "̂ !. fo general, they are 

prepared as their dimeric diaminodithioquinone counterparts since the amine moiety lends 

stability to the system^. However it appears that the bonding between the thiolate and gold 

supports the thioquinone structure. 

X-Ray Photoelectron Spectroscopy (XPS) of BHT Monolayers 

The gold-sulfur bond of an organosulfur monolayer can be easily probed using X-ray 

photoelectron spectroscopy. Previous investigations have argued that thiols adsorb as their 

corresponding thiolates by the cleavage of the sulfur-hydrogen bond. For a typical 

alkanethiol monolayer, the bands appear at 163.2 eV and 162.0 eV for the sulfur 2pvz and 
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2p3a emissions, respectively*-"̂  ̂ Furthermore, the XPS spectrum of an arenethiol such as 

thiophenol is similar, with bands at 163.0 and 164.0 eV for the S(2p) electrons^. 

The XPS spectrum for BHT on Au/Cr/glass from 158-178 eV is displayed in Figure 

2. The broad feature centered at 163.5 eV suggests that more than one stale of sulfur is 

present. This observation is not uncommon for thiols with a complex aromatic system such 

as BHT. Fujihara and coworkers observed a broad XPS peak at —162 eV for a bisthiophene 

derivative"^. Deconvolution of this feature pointed toward the possibility of two sulfor 

species, one tightly bound to the surface, the other unbound. However, these results were 

not conclusive. 

Friction Force Microscopy (FFM) of BHT Monolayers 

Recently, sample preparation using micro-contact printing (jx-CP) has been utilized in 

conjunction with Friction Force Microscopy (FFM) to show differences the spatial 

orientation monolayers  ̂I. Using this methodology, subtle differences in the terminal group 

orientations can be probed. In theory, one should not be able to obtain a friction image with 

a developed jx-CP pattern if the aromatic ring is oriented parallel to the gold surface, 

however, a perpendicular orientation should have higher friction than the bare gold surface, 

and in this case, a pattern would be observed. 

Figure 3 presents the friction image (40 x 40 gm) of a Au/mica surface after printing 

with a BHT monolayer. A distinct pattern is evident in the AFM image in Figure 3. which is 

attributed to height-induced friction. Although there appears to be some height, the results 

are not enough to draw a conclusion as to the exact orientation of the BHT molecules. 

Further exploration of the BHT monolayers by FFM is currently in progress. 
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Electrochemical Measurements of Surface Coverage 

Reductive desorption is a common method to determine the surface concentration of 

thiols on gold surfaces. M a series of studies-^-^7-49 we have shown that alkanethiolate 

monolayers can be desorbed into alkaline solutions from Au(ll 1) on mica by a one-electron 

reduction as shown in equation 1. Using a linear voltage sweep, for example, to drive the 

reaction produces a single well defined cathodic wave that reflects the desorption process. 

The surface concentration (F) of the monolayer is subsequently calculated by integrating the 

area under the desorption wave after accounting for surface 

roughness and double layer charging current. 

AuSR - le* • RS - Au(0) (I) 

A representative voItammogram for the reductive desorption of adsorbed BHT is 

shown in Figure 4. The voltage scan was initiated at —200 mV at 50 mV/s, and was reversed 

at -1200 mV before solvent reduction. The response clearly exhibits two reduction waves 

(-750 mV and -940 mV), which are superimposed on a broad background. The surface 

concentration was calculated to be 73 x 10"9 mol/cm2. This value is higher than the 

estimated coverage, = 5.95 x 10"'° mol/cm", for the closest packed adlayer of BHT on 

Au( III) adsorbed with its ring parallel to the electrode surface. 

The presence of two reduction waves and a high coverage indicates that more than 

one type of Au-S linkage is present and lends credence to the possibility of a C=S. It is 

rationalized that a species containing C=S would be more weakly bound than a typical 

thiolate. Hence, it is expected that part of the adsorbed BHT with C=S bonds would desorb 
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at less negative potentials (i.e., at —750 mV) followed by the desorption of the aromatic 

thiolate at -940 mV. It is also possible that the high coverage results from the formation of 

multilayers due to it—TC interactions between adsorbing aromatic rings. 

Electrochemical Evaluation of BHT-Modified Electrodes 

Many probe molecules have been used to investigate the integrity of monolayer 

coatings by determining the heterogeneous electron transfer rates^O-SZ Ferrocene and 

catechol were chosen to evaluate the electron-transfer properties of the BHT-modified 

electrodes since their electron transfer mechanisms are outer and inner-sphere, respectively, 

and the electrochemical behavior of these systems at gold electrodes is well documented .̂ 

Figure 5 presents cyclic voMammograms for 1.3 mM ferrocene in methanol at (a) 

uncoated gold and (b) BHT-modified gold electrodes. Both voItammograms display a 

reversible redox wave with a formal reduction potential at +-410 mV and a comparable peak 

separation of 120 mV. Therefore, the BHT monolayer does not inhibit electron transfer at the 

electrode surface for an outer-sphere mechanism. 

hi sharp contrast is the voltammetry of catechol at uncoated gold, BHT-modified 

gold, and glassy carbon (GC) electrodes. Figure 6 shows the cyclic voltammetry for 1 mM 

catechol (in 0.1M aqueous acetic acid) at (a) uncoated gold electrode, (b) BHT-modified gold 

electrode, and (c) GC. Typical quasi-reversible electrochemical behavior for catechol is 

observed at the uncoated gold surface (Figure 6a), with a formal reduction potential of 

-423 mV and a peak separation of 175 mV. 

In contrast to uncoated gold, the voltammetry of catechol at a BHT-modified 

electrode (Figure 6b) is markedly attenuated and is characterized by an irreversible cathodic 

wave. Similarly, the voltammetry of catechol at an as-polished glassy carbon electrode 
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(Figure 6c) is also irreversible. These observations lead to the conclusion that the BHT-

modified gold electrode essentially electrochemically "mimics" a carbonaceous surface. 

Conclusion 

BHT is an intriguing species when adsorbed to a gold surface. The presence of six 

thiol groups on one molecule affords BHT the possibility of many surface orientations and 

modes of binding to the gold surface. However, a featureless infrared reflectance spectrum 

and clearly implies that the benzene ring is lying parallel to the gold surface. This conclusion 

is substantiated by the FFM friction image, which shows only edge-induced friction. To our 

knowledge, an entirely parallel aromatic thiol system is unprecedented in literature and 

points toward the intriguing possibility for carbon films of monolayer thicknesses. 

Results from XPS analysis and reductive desorption experiments indicate the 

presence of more than one sulfur state on the gold surface. Although we are unable to 

confirm the exact nature of the sulfur species, an IRRAS adsorption band at 1275 cm*1 points 

toward a C=S species which is arguably possible considering conjugation through resonance. 

The electrochemical behavior of BHT-modified gold surfaces mirrors that of a carbon 

electrode pointing toward the possible use of BHT as a modification agent for gold surfaces 

when the properties of carbon electrodes (e.g. wide potential windows, materials properties) 

are desired. Several applications of BHT monolayer films can be envisioned including 

coatings for gold microchannels. detectors, and platforms for quasicrystals. 
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Figure Captions 

Scheme 1. Representation of orientation of BHT molecules with the aromatic ring 

adsorbed (a) parallel and (b) perpendicular to the gold substrate. 

Scheme 2. Postulated resonance mechanism for formation of carbon-sulfiir bonds in 

BHT adsorbed on gold. 

Figure 1. IRRAS spectrum of a BHT monolayer on a Au/Cr/glass substrate. Regions 

displayed are from 3200-2800 cm"1 and from 1700-1000cm"1. 

Figure 2. X-rav photoelectron spectrum of the S(2p) region of a BHT monolayer on a 

Au/Cr/ glass substrate. 

Figure 3. Friction image (40gm x 40 um) (z-scale = 0.2 V) of a BHT monolayers 

patterned on smooth gold by micro-contact printing. The areas of darker 

contrast are due to edge-induced friction, and not indicative of perpendicularly 

oriented BHT molecules. Brighter image areas are indicative of higher 

friction. 

Figure 4. Cyclic voltammetry for reductive desorption of BHT at Au/mica. Scan was 

initiated at —200 mV at 50 mV/s with 0-5 M aqueous K.OH as supporting 

electrolyte. 
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Figure 5. Cyclic voltammetry of 1.3 mM ferrocene in methanol (0.1 M 

tetrabutylammonium hexafluorophosphate (TBAH)) at (a) uncoated gold and 

(b) BHT-modified gold electrodes. Scans were initiated at 4-750 mV at 50 

mV/s. 

Figure 6. Cyclic voltammetry of 1.0 mM catechol at (a) uncoated gold, (b) BHT-

modified gold and (c) glassy carbon electrodes, electrode Scans were initiated 

at —750 mV at 50 mV/s in 0.1 M acetic acid as the supporting electrolyte. 
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Scheme 1 
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GENERAL CONCLUSIONS 

Research Overview 

The main objective of this doctoral research was to develop methodologies that 

derivatize both carbon and gold substrates in order to lend new materials properties to the 

surface. Several approaches have been taken to achieve this goal. Carbon substrates (porous 

graphitic carbon (PGC) and glassy carbon (GO)) in both spherical and planar form have been 

successfully functionalized using the electro reduction of arenediazomum salts and the Kolbe 

reaction. These two modification strategies were applied to planar GC electrodes as well as 

on-column using electrochemically modulated liquid chromatography (EMLC). In contrast, 

gold substrates are easily modified by the formation of self-assembled monolayers or SAMs. 

A new monolayer, benzenehexathiol (BHT) chemisorbs parallel to the gold surface in an 

unprecedented fashion, imparting materials properties similar to those of carbon substrates. 

All of the modification methods mentioned in this thesis further efforts to control the 

properties of carbon and gold materials by chemically altering the surface composition. 

On-colunui Modification of Stationary Phases Used in EMLC 

Although EMLC has already been demonstrated as a viable chromatographic method 

that is capable of manipulating retention time by applied potential, the separation of 

proteinaceous materials and polyaromatic hydrocarbons (PAHs) is still challenging. One 

reason for this is the irreversible adsorption of highly conjugated materials to the carbon 

stationary phases resulting from strong 7t—tc interactions. It was postulated that chemically 

altering the surface composition of the carbon phases to minimize these undesirable 

interactions would extend the utility of EMLC as a universal chromatographic technique. 



www.manaraa.com

171 

This project focuses on the development and implementation of an on-cohmm chemical 

modification protocol that integrates with conventional EMLC operating conditions. 

This first successful strategy was realized with the electroreduction or 

arenediazonium salts as modifiers in the mobile phase. In this approach, a reactive 

areneradical is generated at cathodic potentials at the surface of the carbon stationary phase 

(e.g. PGC or GC). The areneradical rapidly inserts into the carbon-carbon aromatic 

framework of the packing material, forming a robust covalent bond between the arene ring of 

the modifier and the carbon surface. Modification by the reduction of arenediazonium salts 

is attractive for two reasons. First, the electrochemistry of several modifiers at GC 

electrodes, and the subsequent characterization of the modified substrates is well documented 

in literature. Secondly, arenediazonium salts are readily synthesized from any substituted 

aniline precursor, thus expanding the group of possible modifiers. As chapters I and 2 

illustrate, modification results in an enhancement of the chromatographic properties of PGC 

and GC stationary phases both at applied potentials (Eappi) and in a conventional high-

performance liquid chromatography (HPLQ column. Additionally, the stationary phases 

modified using arenediazonium reductions show good stability at extremes in pH, which is 

an important consideration when performing biological separations. 

Chapter 3 discusses a second oil-column modification protocol involving the 

oxidation of arylacetate anions (the Kolbe reaction). In this case, an oxidative potential is 

applied to the EMLC column with the modifying arylacetate in the mobile phase. At these 

applied potentials, the arylacetate anion forms a benzyl radical with the subsequent loss of 

CO?. Much like the aryl radical in the aforementioned arenediazonium salt reduction, the 

benzyl radical will also insert into the carbon-carbon bonds of the carbon stationary phase to 
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form a covalent bond. GC column packings that have been modified with substituted benzyl 

groups show an improvement in the separation of polar analytes at positive E |̂. 

Both of the on-column modification strategies display encouraging improvements in 

the chromatographic separations of polar analytes, highly conjugated species and proteins, 

thus adding a new dimension to EMLC. 

Creating Gold Nanostructures on Glassy Carbon Surfaces 

The covalent linking of gold to a carbon surface is a challenging prospect, and is 

therefore unprecedented in literature. Chapter 4 discusses an exciting extension of the 

electroreduction of arenediazonium salts involves the casting of a mercaptoarene film onto a 

GC electrode, via the reduction of 4-mercaptobenzenedizaonium tetrafluoroborate. to provide 

a point of attachment for gold nanoparticles. Furthermore, one may further modify the gold 

nanoparticie surface after deposition through the formation of SAMs. Several applications of 

this new architecture are possible including the creation of individually addressed nano-

arrays. 

Electroactive Chirai Selection with EMLC 

Chapter 5 delves into the exploration of chirai selectors whose adsorption to the PGC 

stationary phase increased or decreased by manipulating the electron donor/acceptor 

properties of the selector electrochemically. These new chirai selectors must be 

electrochemicaily stable, easy to synthesize, and show an overall enhancement in 

enantiomeric resolution. Ferrocenyl-based selectors with a chirai functionality offered an 

attractive prospect that fit the aforementioned criteria. Although several chirai ferrocene 
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derivatives were prepared throughout the course of this doctoral work, (aH>)-

(methylbenzyIaminocarbonyl)ferrocene (MBACF) showed great promise in the resolution of 

a racemic mixture of homatropine. Furthermore, the separation factor (a) increased with 

more positive values of Eappi and is limited only by the potential window of the EMLC 

stationary phase (PGC). 

Imparting Carbon-like Properties to Gold Films 

The modification of gold surfaces by SAM technology in order to customize surface 

characteristics is a mature field. However, evidence for a monolayer that chemisorbs parallel 

to a gold surface has not been reported. Chapter 6 discusses benzenhexathiol (BHT) as a 

thiol species that adsorbs planar to a gold electrode. SAMs of BHT show electrochemical 

behavior similar to that of a freshly polished glassy carbon electrode. This leads to the 

intriguing possibility of modified gold surfaces that possess carbon-like properties. 
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